XClose

UCL Division of Biosciences

Home
Menu

4-year PhD Programme in Neuroscience

We have already selected students for 2019. There will be no further student entries to the programme owing to our funding having run out.

If you are interested in a new, related programme with many neuroscience supervisors please visit the webpage for our 4 year PhD Programme in Optical Biology at https://opticalbiology.org/

or look at other PhD options in Neuroscience at UCL by visiting https://www.ucl.ac.uk/research/domains/neuroscience/study/doctoral-degrees

Fig1Purkinjecell

Fig2myelinatedaxons

SJBfmri1

Why study Neuroscience at University College London?

Outstanding research opportunities

University College London (UCL) offers unrivalled opportunities for PhD research in all aspects of neuroscience. Specimen PhD projects are given below: the subjects studied range from the molecular biology of neuronal proteins, through cellular neuroscience, to the behaviour of sensory and motor systems and brain imaging. Neuroscience research is carried out in all of the College's biomedical departments, by researchers who are among the leaders of their fields, using the most modern techniques to address important problems of basic and clinical neuroscience.  Research labs are well-funded, so that PhD students have the best chance of getting off to a productive start in their research. 

UCL produces the highest quality neuroscience research of any university in the country. A Rand Report has shown that it produces the highest quality neuroscience research of any UK university. For neuroscience it generates the highest percentage (18%) of England's contribution to the world's most highly cited publications, which is twice as much as Cambridge or Oxford. For neuroimaging it also produces the highest percentage (21%) of England's contribution to the world's highly cited papers, which is 70% larger than Oxford and three times more than Cambridge. Confirming this analysis, Thomson ISI (Web of Science - Essential Science Indicators) rate UCL as the 2nd university in the world and 1st university in Europe for number of citations to research papers in Neuroscience & Behaviour over 2008-2018. Accordingly it is an outstanding place to train the next generation of neuroscience researchers.

Cultural and social opportunities provided by London

UCL is located in Bloomsbury, close to the entertainment areas of the West End and South Bank which offer an enormous range of music, art, theatre and film, and a vast number of restaurants and bars. London is extremely socially diverse: most PhD students rapidly establish a thriving social life.

Why choose to study Neuroscience in the 4-year Programme?

Because the 4-year Programme provides a better training, equipping students with the experimental and theoretical techniques needed to do outstanding research in their future career (see tab below on Student Outcomes).

Deficiencies of 3-year PhDs

Conventional 3-year PhDs involve a student working with a supervisor who they often have little knowledge of before they start, on a project which they have little prior understanding of. The resulting training can be rather narrow (limited to learning the techniques offered by that one lab), and students sometimes select supervisors or projects which are not best suited to them.

Structure of the 4-year programme

Value of the first year

The four year programme provides a broader and deeper research training in neuroscience, and allows students to make a more informed choice of supervisor and project. This is achieved by having an initial training year in which the students attend some specialized courses, and do three brief (3 month) research projects in different labs. Out of the three broad subject areas of Molecular Neuroscience, Cellular Neuroscience and Systems Neuroscience & Imaging, students will choose laboratories from at least two areas, in order to maintain a broad expertise across neuroscience in the first year. By working in different labs, the students will have the opportunity to acquire a broader range of experimental and theoretical techniques, and to try out supervisors with whom they may wish to do research for the PhD. For the structure of the 1st year please refer to the tabbed panel 'Year 1 Structure' section below.

The 3 PhD years

After their first year, students will work in one lab doing research for the PhD (this might be one of the labs they worked in during the first year, or a different lab). During the PhD students will be encouraged to attend advanced training courses in the USA and Europe. For supervisors available for PhDs please refer to the tabbed panel 'Supervisors' section below.

Pastoral care

Throughout the 4 years, the student's progress will be monitored and assessed by a committee responsible for the training provided. Students will be integrated into the community of neuroscience researchers at UCL by participation in journal clubs and social events. Career advice will be given in the last year to prepare the student for their post doctoral career.

The 4-year PhD Committee

The committee currently comprises David Attwell, Sarah-Jayne Blakemore, Patricia Salinas and Alasdair Gibb, and students can approach any of the committee members for advice and guidance when needed.

Student experiences and outcomes

Want to read about students' experiences on the 4 year programme? - they are described in Trends in Neurosciences (July 2000) Vol 23, pages 280-283. An assessment of how well the students do scientifically on the programme is given in the tabbed panel 'Student Outcomes' section below.

If you have any questions...

Please read all of this website, especially the Detailed Instructions section and only if the question is not answered there, you can email Joanna Fryer, j.fryer@ucl.ac.uk, for an answer.

Supervisors
Molecular NeuroscienceCellular NeuroscienceSystems/Cognitive Neuroscience 

Gill Bates
Molecular Basis of Huntington's disease

David Attwell
Neuron-glial interactions and brain energy supply

Athena Akrami
Learning, Memory and Infreence

 

Annette Dolphin
Voltage-dependent calcium channels

Arantza Barrios
Genes and circuits for innate and learned behaviours in C. elegans

Gareth Barnes
Wearable brain scanners

 

Vilaiwan Fernandes
Glial roles during brain development

Marco Beato
Glycinergic inhibition in the ventral spinal cord

Caswell Barry
Memory, space, and hippocampal networks

 
Elizabeth Fisher
Motor neuron degeneration and genes
Issac Bianco
Zebrafish circuits and behaivour
Genes and circuits for innate and learned behaviours in C. elegans
Tim Behrens
Storing and updating models of the world for controlling behaviour
 
Matthew Gold
Molecular basis of neuronal second messaging
Tiago Branco
Computation of instinctive decisions
Daniel Bendor
Neural Coding of Perception and Memory
 
John Hardy
Genomic and cellular investigation of neurodegeneration
Liam Browne
Neural circuits for nociception and pain
Sven Bestmann
Decision implementation and action preparation
 
Adrian Isaacs
Molecular basis of frontotemporal dementia and amyotrophic lateral sclerosis
Mike Cheetham
Cell Biology of Neurodegeneration
Jennifer Bizley
Auditory and auditory-visual perception
 
Parmjit Jat
Cellular functions of the prion protein
Michael Duchen
Neuronal activity, mitochondrial function and cell death
Robert Brownstone
Neural circuits for movement
 
James Jepson
Drosophilia Neurogenetics
Mark Farrant
Ionotropic GABA and glutamate receptor signalling
Neil Burgess
Neural networks and hippocampus
 
Nicoletta Kessaris
Forebrain neurogenesis
Jonathan Gale
Cell development and regeneration
Francesca Cacucci
Hippocampal neural circuits
 
Josef Kittler
Cell biology of the synapse
Alasdair Gibb
Ion channel receptors and synaptic transmission
Matteo Carandini
Sensory representation by neuronal populations
 

Rick Livesey
Human cerebral cortex development and disease

Linda Greensmith
The Graham Watts Laboratories for Research into Motor Neuron Disease

Ray Dolan
Emotion and decision making

 
Alison C Lloyd
Peripheral nerve regeneration and cancer
Michael Häusser
Dendritic Processing
Elena Dreosti
A developing social brain circuit
 
Neil Millar
Neuronal nicotinic acetylcholine receptors
Soyon Hong
Microglia-synapse biology in brain function and dementia
Maria Fitzgerald
The Developmental Biology of Spinal Cord and Cortical Pain Processing
 
Stephen Price
Neuronal development
Johannes Kohl
State-dependent neural processing
John Greenwood
Visual perception & psychophysics
 
Antonella Riccio
Transcriptional and epigenetic mechanisms in developing neurons
Martin Koltzenburg
Chronic Pain
Patrick Haggard
Control of human action
 

Bill Richardson
Neuroglial stem/progenitor cells

Dimitri Kullmann
CNS synaptic transmission, epilepsy, and inherited mutations of ion channels in neurological disease. State-dependent neural processing
Kenneth Harris
Computation in cortical circuits
 
Jason Rihel
Sleep

Andrew MacAskill
Synaptic and circuit basis of emotional behaviour

Kate Jeffery
The neural representation of space and context
 
Patricia Salinas
Cell signalling in synaptic plasticity and synapse degeneration

Ryan MacDonald
Cellular and molecular mechanisms of glial morphogenesis

Tara Keck
Cortical synaptic plasticity
 
Stephanie Schorge
Ion channels and disease
Shin-ichi Ohnuma
Cell cycle and neural development
Steve Kennerley
Neuronal mechanisms of learning and decision making
 
Lucia Sivilotti
Ion channels as single molecules
Sandip Patel
Neuronal calcium signalling by NAADP
James Kilner
Action observation: perceptual learning and inference

 
 
Trevor G Smart
Molecular pharmacology of GABA and glycine receptor-ion channels
Rachael A Pearson
Stem Cell Therapy and Retinal Degeneration
James Kilner
Action observation: perceptual learning and inference
 
Claudio Stern
CNS Development
Paola Pedarzani
Ion channels regulating neuronal excitability and firing properties
Alexander Kraskov
Cortical and subcortical mechanisms of movement generation and inhibition
 
Martin Stocker
Molecular pharmacology and physiology of potassium channels
Dmitri Rusakov
Principles of synaptic signal formation in the brain
Anna Kuppuswamy
Predictive sensorimotor control in central fatigue
 
Jernej Ule
Structure and function of neuronal protein-RNA complexes
Giampietro Schiavo
Axonal transport in health and disease
Peter Latham
Network dynamics and neural coding
 
David Whitmore
Circadian clocks in zebrafish
Mala Shah
Voltage-gated ion channels

Nilli Lavie
Attention and Cognitive control

 
Stephen Wilson
Zebrafish CNS development
Angus Silver
Synaptic transmission and neural computation
Nicholas Lesica
Population coding in sensory systems
 
John Wood
Molecular genetics of sensory neurons
Kenneth Smith
Pathophysiology of neuroinflammation

 
Jennifer Linden
Brain mechanisms for perception of complex sounds
 
 Sarah Tabrizi
Cellular mechanisms of neurodegeneration
Eleanor Maguire
The neural basis of spatial and episodic memory in humans
 
 Kirill Volynski
Mechanisms of neurotransmitter release in health and in neurological disease
Tamar Makin
Human brain plasticity
 
 

Matthew Walker
Mechanisms and treatment of epilepsy

Benedetto De Martino
Value Computation, Uncertainty and Choice
 
  

Geraint Rees
Cognitive neuroscience of attention & awareness

 
  Jon Roiser
Neural basis of motivation and emotion
 
  Maneesh Sahani
Theoretical Neuroscience and Machine Learning
 
  Aman Saleem
Neural circuits that transform visual information to spatial memories
 
  Tali Sharot
Information Processing and Belief Formation
 
  Nick Ward
Plasticity and recovery in health and disease
 
  Jason Warren
Clinical neuroscience of complex sound
 
Year 1 Structure

Structure of the First Year of the 4 Year PhD

The first year has 3 main components, compulsory courses, optional courses and (occupying most of the time) three 3 month laboratory placements spent doing research and learning techniques.

Compulsory Courses

These consist of:

An Induction course introducing you to the College
A course on Current Techniques in Neuroscience
A Topics in Neuroscience course, structured like a journal club in which you present research papers
A Statistics course
A course on Library and Database Usage
An Electronics course
A course on the Ethics of Animal Experimentation
Two Neuroscience courses chosen from the Optional list below
Attending Journal Clubs associated with the lab placements (see below)
A Science Communication course (may also be taken in the 2nd year)

 

Optional Courses

These consist of:

Computing Courses on E-mail, Word Processing, Internet, Spreadsheets, Powerpoint, Visual Basic, and more advanced programming
A Mechanical Workshop course
A Further Statistics course
A Radiation Safety course
Orientation for Foreigners
English for Foreigners

 

The following Neuroscience Courses:

Advanced Cytology 
Neural Basis of Learning + Motivation
Advanced Neuroanatomy 
Neurobiology of Neurodegenerative Disease 
Cellular + Developmental Neurobiology
Control of Movement
Neural Computation
Peripheral Nervous System
Animal Cell Biology 
Develpmantal Biology: Cell + Molecular Aspects 
Molecular + Cellular Pharmacology 
Neuropharmacology
Synaptic Pharmacology
Neurobiology of Behaviour
Neurophysiology
Cell Physiology 
Speech
Hearing
Memory
Visual Perception
Neurobiology of Vision
Pain
Clinical Neuroscience

6 weeks
6 weeks
6 weeks
5 weeks
22 weeks
6 weeks
6 weeks
6 weeks
6 weeks
11 weeks
6 weeks
6 weeks
6 weeks
6 weeks
6 weeks
6 weeks
6 weeks
6 weeks
6 weeks
5 weeks
5 weeks
5 weeks
2 weeks  

Journal clubs in the rotation labs

The Laboratory Placements

Three of these are done, chosen from labs working in the broad areas of Molecular Neuroscience, Cellular Neuroscience, and Systems and Imaging Neuroscience. Students must choose 3 placements covering at least 2 of these broad areas (in order to avoid over-specialization in the first year). For example, students might do a placement in one lab which they think they might want to do their PhD research in, one in a similar lab for comparison, and one in a lab studying something quite different to gain experience in another area. Students doing these placements often publish papers on their work, or present it at scientific meetings.

For information on supervisors and projects refer to the supervisors tab

Assessment

Student progress during the first year is assessed by:

(i) exams on the Topics in Neuroscience course, the Ethics of Animal Experimentation course and on the Statistics course
(ii) a write-up and 10 minute oral presentation on each lab placement
(iii) their placement supervisor's assessment of their work
(iv) their contribution to journal clubs they attend
(v) the writing of a research plan outlining their proposed PhD project for the subsequent 3 years.

Student Outcomes

Recruitment

 

We currently receive about 400 applications per year from all over the world. From these, we select 30 applicants for interviews which assess knowledge, creativity and data interpretation. From these 30 candidates, we choose 5 for the places available on the PhD Programme. Our selection ratio of women:men closely reflects the ratio of women to men applying (over 22 years, out of 142 students selected 59.9% were women and 40.1% men). BME students, defined conventionally to include Asians and mixed race students, comprise 8.5% of accepted students.

How well do the students in the programme do scientifically?

We analysed this after 10 years of the programme being in operation.


Scientific publications

As of April 2007, the students going through the programme since 1996 have published a total of 251 journal papers since entering the programme, with 28 (11%) high profile papers in Nature family journals, Science, Cell or Neuron.

Five years after starting the programme, the 15 students in the first three years' entry had published 80% more papers/student than the average of all 123 three year PhD students recruited to the same departments at the same time. One might hypothesise, however, that this superiority of the 4 year students could reflect the 3 year PhD students being less selected or working with weaker supervisors. To assess whether the 4 year programme confers particular benefits, we therefore carried out tougher comparisons, that were not confounded by the inclusion of weaker supervisors who we do not allow onto the programme, or by the selection bias inherent in our admission process. We did this as follows.

First we removed supervisor bias, by comparing the output of students in our programme with the output of matched 3 year PhD students who did a PhD in the same lab at approximately the same time (all except 5 of the 66 1996-2004 students could be matched). The results are plotted in Figure 1 as absolute number of papers, and in Figure 2 as the relative productivity of 4 and 3 year students (1 is added to the number of papers before taking the ratio to avoid divisions by zero). From 7 years after starting, the productivity of 4 year students increases significantly (Fig. 2) above that of 3 year PhD students with the same supervisors. Students in the first 3 entry cohorts have now received 2621 citations of their papers, compared with 1421 citations of the papers of matched 3 year students in the same labs (84% more).

Figure 1

figure01.png

Figure 2

figure02.png


Secondly, to eliminate effects of the higher selection to which our students were subjected, we compared the output of our 4 year students, with the output of students who we made an offer to but who chose to take up a place on a 3 or 4 year PhD elsewhere. This ensures that the comparator students were viewed by our committee as being at least as good as the accepted students. The results (Figure 3) show a significantly higher output, from 7 years after starting the course, by our 4 year students than by students who rejected our offer.

Figure 3

figure03.png


We conclude that going through the first year of the 4 year PhD adds significant long-lasting value to the students' scientific training.

Career Path after the PhD

Most of the students follow a career in research. As of 2007, of the 37 students who have obtained their PhD, 29 (78%) went on to post-doc positions, 6 went to science-related jobs (drug companies, scientific administration, patent agency or management consultancy) and 2 left science, so overall 95% (35/37) took up positions using their science. The earlier cohorts are now starting to obtain permanent academic positions or Career Fellowships: one is a lecturer at the Royal Vet College, 3 are Royal Society Dorothy Hodgkin Fellows at UCL, one has a 5 year Faculty position at EBRI (Rome), one is an MRC CDF in Leicester, one is a Wellcome RCDF at UCL, two have permanent positions in Edinburgh.

The images at the top of this page

The pictures at the top of this page show different levels of function of the nervous system.

The left hand picture shows cellular interactions between neurons: the axon of an inhibitory interneuron (green) makes synapses onto a cerebellar Purkinje cell (red) in the brain's motor system. Image by Beverley Clark and Michael Häusser.

The middle picture shows information superhighways in the brain: the gold colour shows antibody to myelin, which speeds the conduction of information along neuronal axons in the brain's white matter. Image by Ragnhildur Káradóttir and David Attwell.

The right hand picture shows function at the whole brain level: the red and yellow colour shows areas where neurons are detected to be active using fMRI (functional magnetic resonance imaging) during a particular task, superimposed on a structural image of the brain. Image courtesy of Sarah-Jayne Blakemore and the Wellcome Trust Centre for Neuroimaging, UCL.