BEST

Biodiversity, Ecosystem Services, Social Sustainability and Tipping Points in East African Drylands

Project Findings and Future Potential

Dr. Aidan Keane Imperial College London

BEST Project Policy Maker, Practitioner, Community User and Researcher Workshop ILRI, Nairobi, 13th August 2013

Introduction

The BEST Project approach

Introduction

What sort of questions are we asking?

Experimental games

experiments

What livelihood decisions to people make?

Introduction

Games as experiments

- Behavioural economics
- Controlled settings
- e.g. co-operation, common-pool resources, public goods
- Mostly lab-based, undergraduate populations in USA/Europe
- Highly abstract

This study:

- Game tailored to real situation
- Played with local people, familiar with decision-making context
- Dynamic resource; droughts

Introduction

Participants

- Groups of 8-10 individuals
- 191 participants in total
- ~50:50 conservancy members/non-members

Key variables

- Outcomes:
 - cattle vs. cash
 - legal vs. illegal grazing
- Predictors:
 - situation in game
 - participant characteristics

Broad patterns

Mean wealth outcomes

- Communal: 21.8 units/individual
- Private: 20.1 units/individual
- Conservancy: 23.2 units/individual

Mean change in wealth per round (non-drought / drought)

- Communal: + 11.0% / 34.1%
- Private: + 8.2% / 38.2%
- Conservancy: + 11.3% / 31.0%

Broad patterns

Resource allocation

- Communal: 62.9% cattle
- Private: 71.0% cattle
- Conservancy: 64.9% cattle

Illegal grazing

- Communal: 44.7% illegal
- Private: 35.0% illegal
- Conservancy: 51.5% illegal

Factors affecting decision-making

Effects of "in-game" variables on decision-making

Comparison with empirical trends

Effects of personal characteristics on decision-making

e.g., Effect of cattle ownership

Participants w. 50+ livestock allocate 8.7% more resources to cattle within the game

How do people value different livelihoods?

Preferences

Understanding preferences

Flavour: Chocolate and strawberry

Delivery mechanism: Waffle cone

Price 200 KSh

Flavour: Chocolate and chopped nuts

Delivery mechanism: Stick

Price 250 KSh

Our experimental design

Monthly wage

- 0 KSh/month
- 6,000 KSh/month
- 10,000 KSh/month

Conservancy

- No involvement
- 75 acres for 9,000 KSh
- 150 acres for 18,000 Ksh

Number of cattle

- No cattle
- 40 animals
- 100 animals

Access for grazing

- Grazing allowed
- Grazing forbidden

Number of small stock

- No smallstock
- 80 animals
- 200 animals

Cultivation

- No cultivation
- 5 acres cultivated

Our experimental design

Relative values of livelihood components

Substitution rates between attributes

Substitution rates between attributes

Variability between individuals

Differences between values of men and women

Modelling optimal decisions

Which livelihood decisions work well?

Computer modelling allows:

- Exploration of theoretical understanding
- Assumptions --> Consequences
- Experiment with fewer constraints (e.g. scenarios)

Potential for *unexpected outcomes*

Stochastic dynamic programming

Optimal actions over time in an uncertain environment

For the Maasai Mara

- Goal: Maximise survival
- Livelihood activities:
 - Cattle / small stock
 - Cultivation
 - Trading & wage-earning
- Heterogeneity: Land-holdings; Household size; Conservancy membership

Communal scenario

Subdivided scenario

Conservancy scenario

Comparison with empirical trends

Next steps

Incorporate multiple, heterogeneous households

Examine overall effects at community level

Look for winners and losers at household level

Extend to consider changing climatic conditions

...and others, based on feedback!

Conclusions

Better understanding of household level processes driving landscape level changes.

Potential for unexpected consequences of rangeland policy

For discussion

- Interpretation of results
- Real-world relevance
- How to disseminate
- Influencing policy

A research programme co-funded by DFID, NERC & ESRC and accredited by LWEC

International Livestock Research Institute

www.ucl.ac.uk/best

With special thanks to:

Prof. Katherine Homewood (UCL), Dr. Marcus Rowcliffe (ZSL), Dickson Ole Kaelo, Heather Gurd, Dr. Jan de Leeuw (ICRAF), Dr. Mohammed Said (ILRI)