From Mobile Phone Monitoring of Depressive States using GPS Traces Analysis to Data-Driven Behaviour Change Interventions

Luca Canzian
Qascom

Mirco Musolesi
University College London
Outline

• Motivation
• Our Approach
• MoodTraces Application
• Results
Outline

• Motivation
• Our Approach
• MoodTraces Application
• Results
Impact of Depression on Society

- In high-income countries up to 90% of people who die by suicide are affected by mental disorders (WHO Report 2014)

- Depression is the most common mental disorder associated with suicidal behavior (WHO Report 2014)

- 1 in 10 employees in the United Kingdom had taken time off at some point in their working lives because of depression problems (European Depression Association Report 2012)
Depression Diagnosis and Monitoring

• Currently, psychologists rely mainly on self-assessment questionnaires.
• Some disadvantages of this methodology:
 – time-consuming
 – expensive
 – it often relies on the patient’s recollections and self-representation, hence prone to errors
Depression Diagnosis and Monitoring

• Currently based on self-assessment questionnaires.
• Some disadvantages of this methodology:
 – time-consuming
 – expensive
 – it often relies on the patient’s recollections and self-representation, hence prone to errors

• Can we build a complementary technology to support depression diagnosis and monitoring?
Outline

• Motivation
• Our Approach
• MoodTraces Application
• Results
Depression Monitoring through Smartphones

- Why smartphone?
 - Pervasive
 - Highly personal
 - Equipped with many sensors

- Hence they can unobtrusively collect data, anytime and anywhere!
Depression Monitoring through Smartphones

- Why smartphone?
 - Pervasive
 - Highly personal
 - Equipped with many sensors

- Hence they can unobtrusively collect data, anytime and anywhere!

- Location data

Credits: psdgraphics.com and Wired]
• PHQ score: quantification of the depressive state
• Can the mobility trace from Feb. 21 to Feb. 28 say something about the PHQ score at Feb. 28?
Mobility Traces vs. PHQ Score

- PHQ score: quantification of the depressive state
- Can the mobility trace from Feb. 21 to Feb. 28 say something about the PHQ score at Feb. 28?
Mobility Metrics

- Mobility trace: a sequence of stops and moves
Mobility Metrics

- Mobility trace: a sequence of stops and moves
- Considered mobility metrics:
 1) The total distance covered
Mobility Metrics

• Mobility trace: a sequence of stops and moves
• Considered mobility metrics:
 1) The total distance covered
 2) The maximum distance between two locations
Mobility Metrics

- Mobility trace: a sequence of stops and moves
- Considered mobility metrics:
 1) The total distance covered
 2) The maximum distance between two locations
 3) The radius of gyration
Mobility Metrics

- Mobility trace: a sequence of stops and moves
- Considered mobility metrics:
 1) The total distance covered
 2) The maximum distance between two locations
 3) The radius of gyration
 4) The standard deviation of the displacements
Mobility Metrics

- Mobility trace: a sequence of stops and moves
- Considered mobility metrics:
 1) The total distance covered
 2) The maximum distance between two locations
 3) The radius of gyration
 4) The standard deviation of the displacements
 5) The maximum distance from home
Mobility Metrics

• Mobility trace: a sequence of stops and moves
• Considered mobility metrics:
 1) The total distance covered
 2) The maximum distance between two locations
 3) The radius of gyration
 4) The standard deviation of the displacements
 5) The maximum distance from home
 6) The number of different places visited
Mobility Metrics

- Mobility trace: a sequence of stops and moves
- Considered mobility metrics:
 1) The total distance covered
 2) The maximum distance between two locations
 3) The radius of gyration
 4) The standard deviation of the displacements
 5) The maximum distance from home
 6) The number of different places visited
 7) The number of different significant places visited
Mobility Metrics

- Mobility trace: a sequence of stops and moves
- Considered mobility metrics:
 1) The total distance covered
 2) The maximum distance between two locations
 3) The radius of gyration
 4) The standard deviation of the displacements
 5) The maximum distance from home
 6) The number of different places visited
 7) The number of different significant places visited
 8) The routine index
Outline

• Motivation
• Our Approach
• MoodTraces Application
• Results
MoodTraces

- Android application collecting:
 - Location data
 - Answers to daily questionnaires
MoodTraces

- Android application collecting:
 - Location data
 - Answers to daily questionnaires

- Remarks:
 - Questionnaires are needed only to collect ground truth data for training and evaluation,
 - **No user interaction in the final system**
Questionnaire collection process

Patient Health Questionnaire (PHQ-8)

<table>
<thead>
<tr>
<th>Over the last 2 weeks, how often have you been bothered by any of the following problems?</th>
<th>Nearly every day (3 points)</th>
<th>More than half the days (2 points)</th>
<th>Several days (1 point)</th>
<th>Not at all (0 points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little interest or pleasure in doing things</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeling down, depressed, or hopeless</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trouble falling or staying asleep, or sleeping too much</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeling tired or having little energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor appetite or overeating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeling bad about yourself—or that you are a failure or have let yourself or your family down</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trouble concentrating on things, such as reading the newspaper or watching television</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moving or speaking so slowly that other people could have noticed. Or being so fidgety or restless that you have been moving around a lot more than usual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHQ-8 questionnaire:

- 8-item questionnaire
- Frequency of the occurrence of a specific depressive symptom during the last 2 weeks
- Each question is associated with a score between 0 and 3
- PHQ score = sum of individual scores
- Cut points of 5, 10, 15 and 20 for mild, moderate, moderately severe and severe levels of depression
Collected Data

- Data collected from September 3, 2014, to June 14, 2015
- Total of 184 users installed MoodTraces, and 46 users had it running in their phones at June 14, 2015
- Final dataset includes 28 users
Outline

• Motivation
• Our Approach
• MoodTraces Application
• Results
Correlation

Histogram of the correlation for $T_{\text{HIST}} = 14$ days
Correlation

Histogram of the correlation for $T_{\text{HIST}} = 14$ days and $T_{\text{HOR}} = 0$ days

Histogram of the associated p values
Prediction Analysis

- PHQ score is transformed into a 0-1 label
 - Label=1 if and only if the PHQ score is larger than the average PHQ score of that user plus one standard deviation

- We train and test personalized SVM classifiers and a unique SVM classifier
 - Leave-one-out cross validation approach

- Performance metrics:
 - Sensitivity (true positive rate)
 - Specificity (true negative rate)
Sensitivity and Specificity Histograms

Histograms sensitivity for different values of T_{HIST} ($T_{\text{HOR}} = 0$)

- $T_{\text{HIST}} : 1$ day
- $T_{\text{HIST}} : 7$ days
- $T_{\text{HIST}} : 14$ days

![Histograms for different values of T_{HIST}](image)
Sensitivity and Specificity Histograms

Histograms sensitivity for different values of T_{HIST} ($T_{HOR} = 0$)

- T_{HIST}: 1 day
 - Number of users vs. Sensitivity

- T_{HIST}: 7 days
 - Number of users vs. Sensitivity

- T_{HIST}: 14 days
 - Number of users vs. Sensitivity

Histograms specificity for different values of T_{HIST} ($T_{HOR} = 0$)

- T_{HIST}: 1 day
 - Number of users vs. Specificity

- T_{HIST}: 7 days
 - Number of users vs. Specificity

- T_{HIST}: 14 days
 - Number of users vs. Specificity
Sensitivity and Specificity vs. History Interval

Average sensitivity and specificity vs. T_{HIST} ($T_{HOR} = 0$)
Sensitivity and Specificity vs. Horizon Interval

Average sensitivity and specificity vs. T_{HOR} ($T_{HIST} = 14$)
Sensing, Predicting and Influencing Human Behaviour

• Sensed information about human behaviour can be used to build models and to make predictions.
• But also it can be used to influence the behaviour of the individuals themselves.

InterruptMe

• Library for intelligent notification based on context information based on offline and online learning methods:
 – On-device and online learning process
• Possible application: behaviour intervention

Content-driven Notifications

- Not only context but also content
- Analysis of the type of applications and notifications
- Analysis of the social ties of the individual

Context-aware interventions

Real-time data mining

Sensing & user querying
Correlation Vs Causation

• Correlation vs causation problem
• It is not always possible to design experiments, so we need alternatives: quasi-experimental approaches
• We develop a new methodology for extracting causality information from sensor data

Conclusions

• We developed an application to collect location data and answers to daily questionnaires
Conclusions

• We developed an application to collect location data and answers to daily questionnaires
• We derived mobility metrics from location data and computed PHQ scores from questionnaire answers
Conclusions

• We developed an application to collect location data and answers to daily questionnaires
• We derived mobility metrics from location data and computed PHQ scores from questionnaire answers
• We showed that for many individuals there is a significant correlation between mobility metrics and PHQ scores
Conclusions

- We developed an application to collect location data and answers to daily questionnaires.
- We derived mobility metrics from location data and computed PHQ scores from questionnaire answers.
- We showed that for many individuals there is a significant correlation between mobility metrics and PHQ scores.
- We showed that it is possible to develop inference algorithms to predict with a good level of confidence large PHQ score increases from mobility metrics.
Conclusions

- We developed an application to collect location data and answers to daily questionnaires.
- We derived mobility metrics from location data and computed PHQ scores from questionnaire answers.
- We showed that for many individuals there is a significant correlation between mobility metrics and PHQ scores.
- We showed that it is possible to develop inference algorithms to predict with a good level of confidence large PHQ score increases from mobility metrics.
- This pilot study shows promising initial results for the development of automatic and unobtrusive applications for depression diagnosis and monitoring.
Acknowledgements

Antonio Lima

Abhinav Mehrotra

Christoph Stich

Fani Tsapeli

Beatrice Perez

Luca Canzian

And previous members and collaborators: Matt Williams, Veljko Pejovic, Luca Canzian, etc.
Acknowledgments

• Dr Paul Patterson (Youthspace Solihull/NHS)
• Prof Rory O’Connor (University of Birmingham)
Acknowledgments

Project funded through the EPSRC-funded (First Grant Scheme) “Trajectories of Depression: Investigating the Correlation between Human Mobility Patterns and Mental Health Problems” (EP/L006340/1)
Questions?

Mirco Musolesi
Department of Geography
University College London

W: http://www.ucl.ac.uk/~ucfamus
E: m.musolesi@ucl.ac.uk
T: @mircomusolesi
Correlation

- Averages of the absolute values of the correlations and of the p-values

<table>
<thead>
<tr>
<th>Mobility metric</th>
<th>Average abs. correlation</th>
<th>Average p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$T_{HIST} = 1$</td>
<td>$T_{HIST} = 14$</td>
</tr>
<tr>
<td>D_T</td>
<td>0.159</td>
<td>0.402</td>
</tr>
<tr>
<td>D_M</td>
<td>0.152</td>
<td>0.432</td>
</tr>
<tr>
<td>G</td>
<td>0.160</td>
<td>0.343</td>
</tr>
<tr>
<td>σ_{dis}</td>
<td>0.147</td>
<td>0.417</td>
</tr>
<tr>
<td>D_H</td>
<td>0.199</td>
<td>0.358</td>
</tr>
<tr>
<td>N_{dif}</td>
<td>0.191</td>
<td>0.360</td>
</tr>
<tr>
<td>N_{sig}</td>
<td>0.201</td>
<td>0.336</td>
</tr>
<tr>
<td>R</td>
<td>0.227</td>
<td>0.368</td>
</tr>
</tbody>
</table>