

Irrigation water requirements under future economic development pathways – a global CGE analysis

Victor Nechifor (UCL ISR) Dr. Matthew Winning (UCL ISR)

Freshwater withdrawals and crop production

Current state

- Withdrawals ~10% of total renewable resources globally
- Agriculture by far the largest user 70% of all withdrawals and 90% of consumption

The pressure

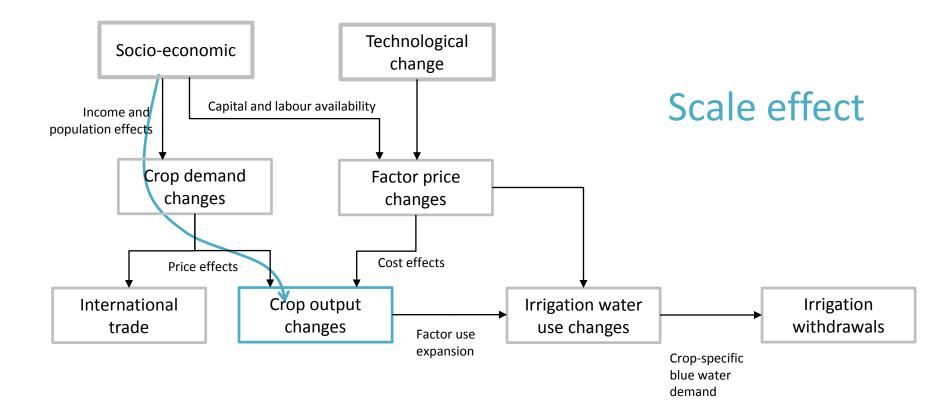
- Irrigated land provides 40% of world crop production
- Agricultural output expected to grow by 60% in the 2007-2050 timeframe (Alexandratos & Bruinsma 2012) – income and population growth
- What implications for irrigation requirements and the sustainability of freshwater resources uses?

Research

Aim

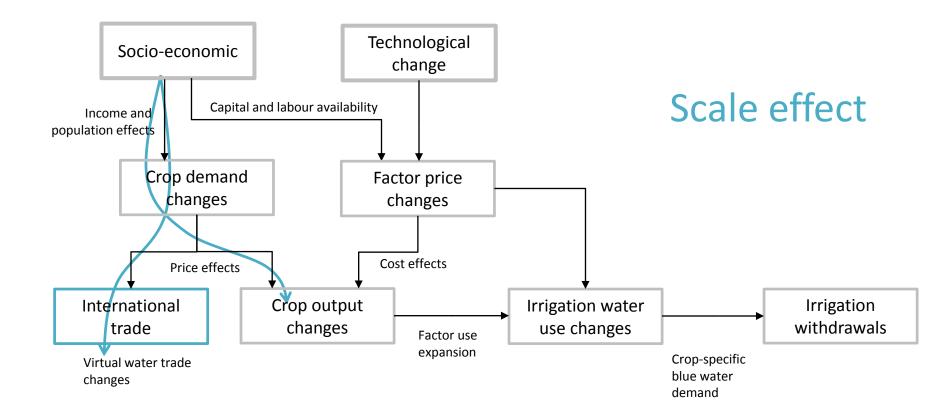
 Understanding socio-economic development impacts over irrigation requirements and withdrawals pressure

Methodology

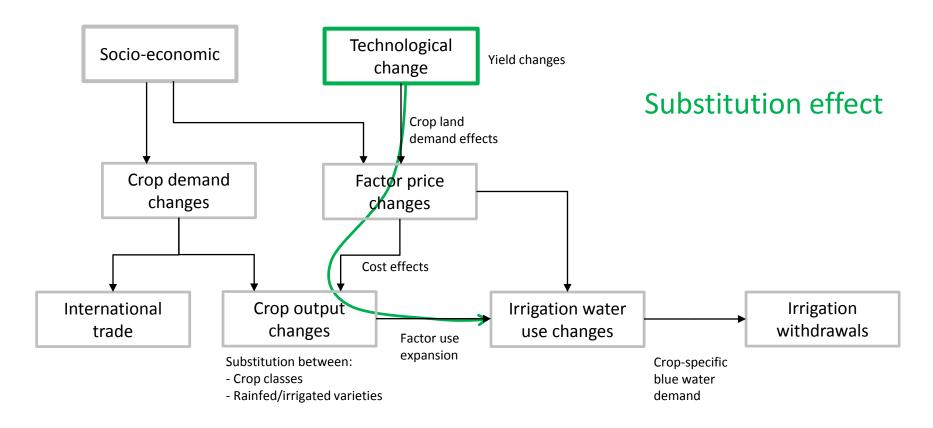

- Global CGE framework RESCU (**Res**ources **C**GE **U**CL) model
- 20 regions, 8 crop classes divided by the rainfed and irrigated varieties
- Irrigation water as a distinct factor of production new accounting methodology based on GCWM raster data (Siebert & Doell 2010)
- Technological changes through inherent yield changes IMPACT model data (Nelson et al. 2010)
- Pressure indicator Irrigation Withdrawals to Availability IWA (withdrawals relative to total renewable resources within a region) with an 20% stress threshold

Socio-economic development scenarios

 3 Shared Socioeconomic Pathways (van Vuuren et al. 2014) – SSP1 (Sustainability), SSP2 (Middle of the Road) and SSP5 (Conventional Development)

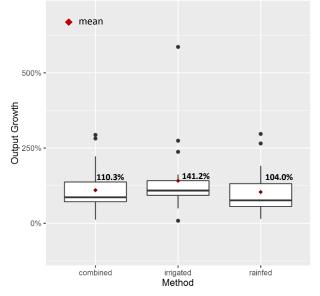


Changes in irrigation withdrawals



Changes in irrigation withdrawals

Changes in irrigation withdrawals



Results – crop output growth 2004-2050

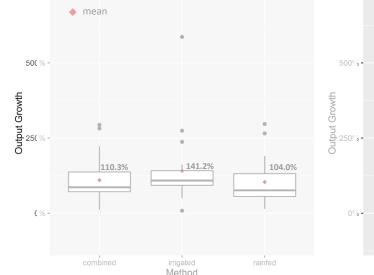
Global Output Growth by SSP

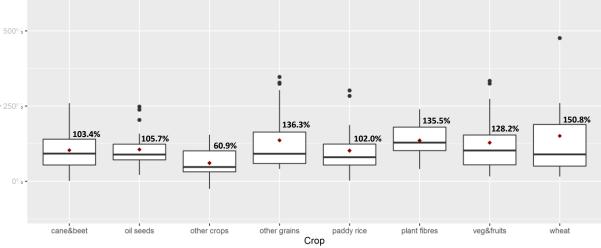
	Overall	Rainfed	Irrigated
SSP2	+83%	+73%	+101%
SSP1	+88%	+77%	+106%
SSP5	+101%	+88%	+124%

Regional Output Growth by Method - SSP2

Results – crop output growth 2004-2050

Global Output Growth by SSP

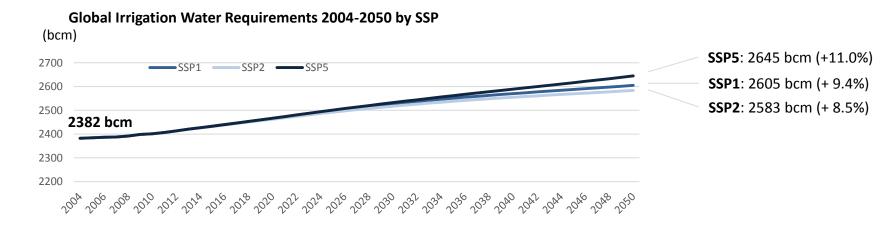

	Overall	Rainfed	Irrigated
SSP2	+83%	+73%	+101%
SSP1	+88%	+77%	+106%
SSP5	+101%	+88%	+124%


Regional Output Growth by Method - SSP2

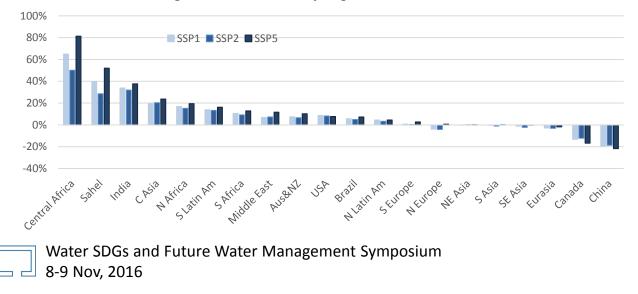
Crop	Cane beet	Oil seeds	Other crops	Other grains	Paddy rice	Plant fibers	Veg fruits	Wheat
SSP2	79%	110%	53%	96%	38%	149%	91%	98%
SSP1	83%	116%	56%	108%	40%	155%	96%	102%
SSP5	93%	130%	67%	114%	44%	168%	113%	116%

Global Output Growth by SSP and by Crop

Regional Crop Output Growth - SSP2



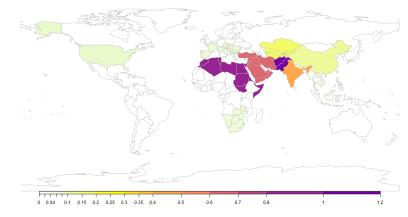
Water SDGs and Future Water Management Symposium


8-9 Nov, 2016

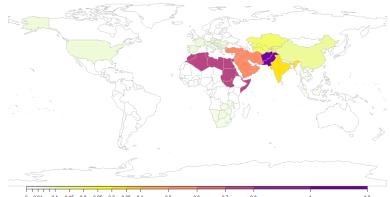
Results – irrigation water requirements

2050/2004 Changes in Withdrawals by Region

Results – IWA withdrawals pressure


IWA = Withdrawals / TRWR

Region	2004	2050			
		SSP1	SSP2	SSP5	
S Asia →	103.89%	103.56%	102.78%	103.96%	
N Africa 🗷	76.80%	89.70%	88.43%	91.75%	
Middle East 7	58.17%	62.17%	62.38%	64.93%	
India 7	31.61%	42.32%	41.68%	43.49%	
C Asia 🗷	16.41%	19.59%	19.75%	20.31%	
China 🖌	12.86%	10.38%	10.45%	10.07%	
USA 7	7.58%	8.24%	8.20%	8.16%	
S Europe 🗷	7.13%	7.18%	7.15%	7.32%	
S Africa 🗷	5.55%	6.12%	6.06%	6.26%	
SE Asia 🖌	2.91%	2.87%	2.84%	2.90%	
Aus&NZ 7	1.78%	1.91%	1.89%	1.96%	
NE Asia $ ightarrow$	1.84%	1.84%	1.84%	1.84%	
N Latin Am 7	1.37%	1.43%	1.42%	1.43%	
S Latin Am 7	1.08%	1.23%	1.23%	1.26%	
Sahel 🗷	0.78%	1.09%	1.00%	1.18%	
Central Africa 🗷	0.61%	1.01%	0.92%	1.11%	
Eurasia 🛛	0.43%	0.42%	0.42%	0.42%	
Brazil 7	0.13%	0.14%	0.14%	0.14%	
N Europe 🖌	0.07%	0.07%	0.07%	0.07%	
Canada →	0.07%	0.06%	0.07%	0.06%	


Water SDGs and Future Water Management Symposium

8-9 Nov, 2016

SSP2 2050

SSP2 2004

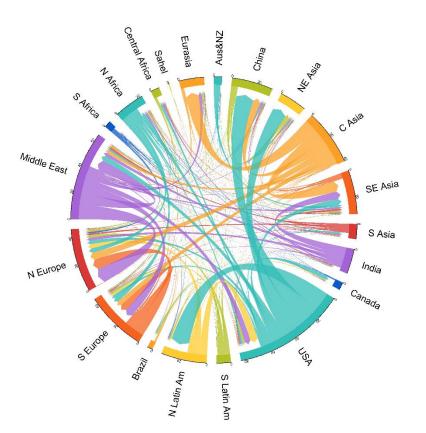
0 0.04 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5

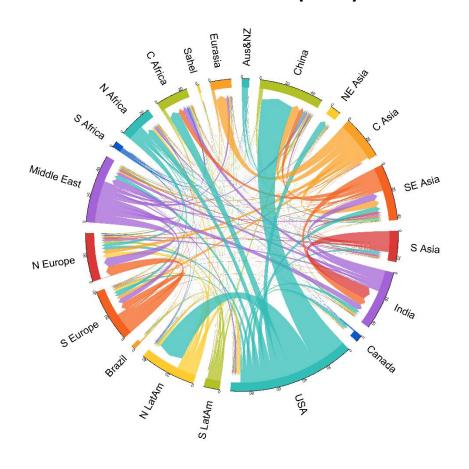
Conclusions

- Higher growth scenarios lead to further increases in irrigation water requirements the scale effect prevails in most regions
- Water-challenged regions continue to expand the pressure over their freshwater resources – importance of efforts to increase water use efficiency (SDG target 6.4)
- Yield improvements have a reducing effect over dependency on irrigation water
- Next steps for modelling
 - Consideration of climate change impacts over yields
 - Inclusion of other freshwater users (livestock, households, industry) for absolute limits on withdrawals

Thank you!

Victor Nechifor victor.nechifor.13@ucl.ac.uk





Virtual water flows

2004: 255 bcm

2050: 282 bcm (SSP2)

