

Temporal Variations of Water Productivity in Irrigated Corn

An Analysis of Factors influencing Yield and Water Use across Central Nebraska

Tony Carr (UCL)

40% population increase by 2050, doubling the demand for food and feed **70%** of all freshwater withdrawals are for agriculture

Water Productivity = $\frac{\text{Crop [kg; \$]}}{\text{Water [m^3]}}$

Nebraska

- Third largest Corn producer in the USA
- Biggest irrigated area in the USA
- Mainly Groundwater for irrigation

Water SDGs and Future Water Management Symposium 8-9 Nov, 2016

Source: University of Nebraska-Lincoln

Study area

Research Objectives

- Evaluation of Water Productivity in the study area
- Analysis of factors influencing Water Productivity
- Extension of Water Productivity analysis to interactions between grain production and water resources with ecological systems

Results

In the majority of cases more water is being added to the fields than needed for achieving optimum corn yields under ideal water, nutrient and pest management.

Results

- Annual Water Productivity variations are mainly influenced by weather conditions
- Control over the amount and timing of water supply improves Water Productivity

Conclusion

- Water Productivity can be improved in the study area
- Improving the quantification of crop water demand can help to increase Water Productivity
- Strategies towards sustainability of water resources should combine quantity with quality issues and consider the interactions of ecological systems