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Outline of the talk

Agricultural irrigation -- a threat to sustainability
A Hydro-economic model of global irrigation

Irrigation sustainability in 2050:

— As affected by irrigation productivity growth

— In face of climate mitigation
Consequences for food security and carbon in the
presence of:

— Inter-basin water transfers

— Integrated commodity markets and trade

Conclusions



Groundwater irrigation has become increasingly
important

Partly in response to surface water
scarcity

figure 10.1 Development in groundwater withdrawal in selected countries
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But strongest growth has been in arid areas
with low recharge rates

Long-term average groundwater recharge

(millimeters per year)
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As a result, nonrenewable groundwater
abstraction for irrigation is widespread
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Figure 5. Nonrenewable groundwater abstraction for irrigation for the year 2000 (10° m” yr™1).

Wada et al. (WRR, 2012): Estimated nonrenewable groundwater
abstraction for irrigation for the year 2000 (10° m3/yr)



We focus on sustainable irrigation threshold:
Withdrawals less than 20% of available water
(Alcamo et al., 2000)

* |rrigation vulnerability index:

Irrigation Withdrawal

Water Available for Irrigation

Available water = (discharge + storage + soil-stored water)

— (residential + industrial + livestock demands)
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A Hydro-economic model of global irrigation



Method: Integrated hydro-economic modelling
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Method: Integrated hydro-economic modelling

« Irrigation availability
* Food price

« Malnutrition

Hydro- Econ- » Land use change
model model « Carbon fluxes
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UNH: Hydrological Model

Water Balance Model

- upstream

2 e Domestic/Industrial grid cell
T © .
Precipitation %—A (consumptive use)

2} . .
E e [rrigation ,nter_iasin
o Transfer
o
o Surface
| Runoff

Reservoirs

Small

downstream
grid cell

Flexible grid size, daily time step, water source/use tracking
Driven by: gridded daily weather, gridded crop & water use maps, reseryoirs, IBTs, ...




Water Balance Model
Communicates results to economic
model at sub-basin level
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SIMPLE Validation: Hindcasting 1961-2006

% change in global variables:1961 to 2006
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Future projections depend critically on the
relative rates of Total Factor Productivity (TFP)
growth for rainfed and irrigated croplands
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Outline of the talk

* Irrigation sustainability in 2050



Projections to 2050: Unsustainable irrigation
(RCP 8.5, equal rates of productivity growth)

Source: author’'s calculation.
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Irrigation in some regions becomes more
sustainable (2006-2050: RCP 8.5, equal TFP)

Source: author's calculation.
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Impact on sustainability index of faster productivity growth

on irrigated lands
‘Better’ means index value is smaller (more sustainable) with faster
irrigation productivity growth
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Impact of climate change mitigation on

sustainability index (RCP 2.6 — 8.5)

‘Better’ means index value is smaller (more
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Outline of the talk

* Consequences of irrigation sustainability policies for
food security and carbon:

— BAU
— In presence of inter-basin water transfers
— In presence of integrated commodity markets



Impacts of imposing sustainability in 2050:
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Imposing sustainable irrigation has adverse impact on food security
Impact on undernourished population in 2050 (1,000’s of people)
and on crop prices (% change relative to baseline)
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Imposing sustainable irrigation has adverse impact on food security
Impact on undernourished population in 2050 (1,000’s of people)
and on crop prices (% change relative to baseline)
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Imposing sustainable irrigation has adverse impact on food security
Impact on undernourished population in 2050 (1,000’s of people)
and on crop prices (% change relative to baseline)
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Imposing sustainable Irrigation has mixed effect on cropland cover and
terrestrial carbon — (equal TFPs, BAU RCP 8.5)
Map bottom shows net cropland area change under integrated markets
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Conclusions

Under BAU scenario, unsustainable irrigation
increases in many, but not all, regions

Evolving irrigation vulnerability index depends on:

— Relative rate of productivity growth: irrigation vs.
rainfed crops, and

— Climate change scenario
— However, effects vary by sub-basin

Impact of sustainability policy also depends on
structure of water and commodity trade:

— Presence of inter-basin water transfers
— Extent of commodity market integration
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