Global Water Scarcity, Food & Storage: a critical review

Richard Taylor, UCL Geography, richard.taylor@ucl.ac.uk

UCL-ISR Water SDGs and Future Water Management, 8-9 November 2016

groundwater leg irrigation of maize (Zambia)

"water scarcity" – water stress index

Persons/10⁶ m³ · yr

renewable freshwater resources defined by *mean annual river discharge* from models/observations
– net contribution of "blue water" to the land surface from precipitation after deducting ET

 population data enable estimation of a per capita freshwater availability

irrigated agriculture accounts for >70% of global freshwater withdrawals Shiklomanov (2000) Water Int. Vol. 25, 11-32.

Shiklomanov (2000) Water Int. Vol. 25, 11-32. Döll et al. (2012) J. Geodyn. Vol. 59/60, 143-156.

"water scarcity" reduces the capacity to irrigate, hindering pursuit of UN SDG 2: End hunger, achieve food security and improved nutrition, and promote sustainable agriculture

Maize plantation irrigated by a groundwater-fed pivot, Kabwe (Zambia)

It is unrelated to 'access to safe water' and UN SDG 6.1: By 2030, achieve universal and equitable

access to safe and affordable drinking water for all

In sub-Saharan Africa, food production depends primarily upon soil water, "green water"

~4% of cultivated land was under irrigation in 2000

Giordano (2006) Hydrogeol. J., Vol. 14, 310-318. Döll et al. (2012) J. Geodyn., Vol. 59/60, 143-156.

water scarcity' per capita threshold of 1000 m³ per year greatly exaggerates freshwater demand where observed per capita use is typically 20 to 25 m³ per year

ea and matooke (unsweet banana) in Bushenyi, Uganda

 global models are uncalibrated* and provide very imperfect estimates of river discharge

Milly et al. (2005) Nature Vol. 438, 347-350.

Döll et al. (2016) Surv. Geophys. Vol. 37, 195-221.

Global Water Scarcity remains inadequately defined by current models and metrics.

sand river, headwater of the Great Ruaha River, Tanzania

human adaptations to water shortage

draw from water storage or store seasonal flows

reservoir storage = "development"

Grey and Sadoff (2007) Water Policy Vol. 9, 545-571.

World Bank

human imprint on terrestrial water cycle 🚔 🔤 💽

 redistribute water from rivers and aquifers to the land and atmosphere through irrigation and dams (energy production & low-flow regulation)

Taylor et al. (2013) Nat. Clim. Change Vol. 3, 322-329. Jaramillo and Destouni (2015) Science Vol. 350, 1248-1251.

constrain use of groundwater due to contamination – more so than depletion in IGB

MacDonald, A. et al. 2016. Nat. Geosci. Vol. 9, 762-766.

redefine freshwater availability: storage

 extent to which available storage, <u>natural</u> and constructed, can address imbalances in water flows

beyond reservoirs: substantial, distributed, natural groundwater storage exists but... is it sustainable?

artesian borehole, Singhida (central Tanzania)

groundwater depletion and irrigation

 groundwater depletion observed in California Central Valley, North China Plain, High Plains Aquifer, NW India & Bangladesh
 these storage declines threaten global food security

Chen (2010) Environ. Earth Sci. Vol. 61, 1037–1047. Longuevergne et al. (2010) Wat. Resour. Res. Vol. 46, W11517. MacDonald et al. (2016) Nat. Geosci. Vol. 9, 762-766. Scanlon et al. (2012) Wat. Resour. Res. Vol. 48, W04520. Shamsudduha et al. (2012) Wat. Resour. Res. Vol. 48, W02508.

Climate change intensifies global hydrological system

- more frequent, very heavy precipitation
- fewer, light and medium precipitation events

Allan & Soden (2008) Science Vol. 321, 1481-1484. Allan et al. (2010) Environ. Res. Lett. Vol. 5, 025205. O'Gorman (2012) Nat. Geosci. Vol. 5, 697-700.

headwater of River Limpopo, NE Botswana

more frequent and intense floods & longer droughts will intensify freshwater storage requirements and thus groundwater...

crop productivity & soil moisture

 more variable rainfall leads to more variable soil moisture reducing crop yields and/or increasing irrigation requirements

No. days afer planting

Challinor et al. 2006. "Avoiding Dangerous Climate Change", pp. 187-194.

intensification of precipitation as a result of global warming favours groundwater recharge in the tropics

sechko and Taylor (2015) Environ, Res.

"Virtual Water" trade?

- water embedded in food (& other commodities) *kilo of wheat: 1100 litres kilo of rice: 2300 litres kilo of maize: 900 litres*
- address water scarcity through the importation of food from "watersufficient" countries to "water-scarce" countries?

global virtual water trade flows

Hoekstra and Mekonnen (2012) Proc. Nat Acad. Sci. Vol. 109, 3232-3237.

- green: (net) virtual water flows out
- red: (net) virtual water flows in
- trade often from 'water-scarce' to 'water-sufficient'

- global water crisis is inadequately defined by both models and metrics
- 'water scarcity' is unrelated to 'access to safe water'
- groundwater represents both a key constraint to global food production (depletion, quality) and a key opportunity to adapt to climate change
- addressing water scarcity through trade in 'virtual water' not yet realised

Thanks for listening!

Victoria Falls