

CGE Approach to Assess the Impacts of Water Scarcity due to Climate Change in Japan :Focus on Agriculture Sector

Hiroshi Hamasaki

Senior Research Fellow

Economic Research Centre, Fujitsu Research Institute

Truong Phuoc Truong

Professor

Institute of Transport and Logistics Studies, The University of Sydney Business School, University of Sydney

Contents

- I. Introduction & Motivation
- II. Water Issues in Japan
- III. Methodologies
- IV. Simulations
 - I. Drought Impacts
 - II. Benefits of Water Trading Market
- V. Concluding Remarks
- VI. Further Challenges

I. Introduction & Motivation

- Japan is surrounded by sea and little attention is paid to domestic water management.
- Volatile weather change, frequent drought and flood and continuous climate change, increasing temperature and increasing number of non-rain days and decreasing snowfall, bring about water scarcity impacts.
- There is no research on water scarcity effects from economic point of view.
- Partial economic model is unable to provide indirect effects of changes, but CGE (computable general equilibrium) model provide more complete welfare assessment, incorporating constraints and feedbacks between different economic sectors and agents.
- We develop CGE model which include water sector and estimate how water scarcity impact spread in Japanese economy and estimate water market benefits.

UCL Institute for Sustainable Resources

II. WATER ISSUE IN JAPAN

Water SDGs and Future Water Management Symposium 8-9 Nov, 2016

4

Japan Water Issue was Virtual Water through Food Imports

Source: MoE, https://www.env.go.jp/water/virtual_water/img/img_big.jpg

Water SDGs and Future Water Management Symposium 8-9 Nov, 2016

renewable water resources per capita Water Demand (100 million renewable water resources per capita

Water SDGs and Future Water Management Symposium 8-9 Nov, 2016

Water Demand (100 million m3/Year)

Increasing Precipitation Intensity

Source: Utsumi et. al., (2011)

- High Temperature
- High Precipitation Intensity
- Decline of Rainfall
- Volatile Rainfall
- Decline of Snowfall

- High Frequency of Drought
- Low Water Supply

Customary Water rights are socially accepted on the basis of custom and practice of water use for a long time by the enactment of the River Law. Those are recognized by the Law and "look upon" as water rights

9

UCL Institute for Sustainable Resources

III. METHODOLOGIES

TERM_J_Water

- Partial economic model is unable to provide indirect effects of changes, but CGE (computable general equilibrium) model can provide more complete welfare assessment, incorporating constraints and feedbacks between different economic sectors and agents.
- TERM Model was originally developed by COPs (Centre of Policy Studies), Victoria University and a multi-regional Australia CGE model.
- TERM version for Japan was constructed by Yamamoto, from 104-sector and distinguishing 47 bottom-up regions
- In this research, we have incorporated water consumption module to TERM model version for Japan and aggregated regions to 14 regions to fit to water consumption statistics.

8-9 Nov, 2016

13

Japan Water Consumption

	Daily Life Water	Industrial Water	Agricultural Water	TOTAL
Hokkaido	6.7	9.8	46.5	63.0
Tohoku	14.3	13.7	158.4	186.4
Kanto_N	10.2	8.8	56.1	75.1
Kanto_R	42.0	13.1	25.7	80.8
Tokai	22.6	25.1	51.5	99.2
Hokuriku	4.0	6.3	28.3	38.6
Kinki_N	7.0	3.4	19.1	29.5
Kinki_R	20.2	10.6	22.1	52.9
Chugoku_I	1.7	1.8	12.4	15.9
Chugoku_Y	7.8	14.2	31.4	53.4
Shikoku	5.5	7.4	21.9	34.8
Kyushu_N	8.9	6.0	39.4	54.3
Kyushu_S	6.0	5.6	34.4	46.0
Okinawa	1.9	0.4	2.4	4.7
TOTAL	158.8	126.2	549.6	834.6

Source: MLIT

Water SDGs and Future Water Management Symposium

8-9 Nov, 2016

Huge Water Price Gap

IV. SIMULATIONS

Water SDGs and Future Water Management Symposium 8-9 Nov, 2016

16

Scenario

Scenario	Water Restriction to Agricultural Sectore	Water Trade Between Regions
No-Trade	\checkmark	
Trade	✓	✓

No-Trade

IV-I. DROUGHT IMPACTS ON ECONOMY

Water Restrictions due to 1994 Drought

and a second sec	" or	Water Restr	iction Rat…
L'AND	- Frita	0.00	66.30
	S A A A A A A A A A A A A A A A A A A A		

Water SDGs and Future Water Manageme 8-9 Nov, 2016	ent Symposium		19

Agricultural Output

Real Wage

GDP Impacts

Comparison Between No-Trade and Trade

IV-2. BENEFITS OF WATER TRADING MARKET

Water Demand

Water Price

Agricultural Output Without Water Market (No-Trade) With Water Market (Trade)

Welfare Gains due to Water Market

28

Welfare Change

V. Concluding Remarks

- Under current no water market situations, agricultural production decrease substantially.
- To create water market will have a potential to minimise the impacts of FY1994 level drought on agricultural sector and welfare is expected to increase in all regions.

VI. Further Challenges

Include Water Trade Infrastructure Cost

Water Pipeline For Agricultural Water http://www.jpe-corp.jp/products/water_01.html

• Seasonality of Water Demand and Rainfall

Water Demand Pattern in Agriculture

FUJTSU

shaping tomorrow with you

Water Trading Market

$$c_QWTR_AGR(d) \\ = -(\frac{0.01}{WATER_ELAS(d)}) \times QW0_AGR(d) \times (p_PWT_AGR(d) \\ - p_PW0_AGR)$$

 $c_QWTR_AGR(d)$: Absolute Change of Water Demand in Region d

- $WATER_ELAS(d)$: Water Price Elasticity of Demand in Region d
 - : Water Supply in Region before Trade in Region d
- $p_PWT_AGR(d)$
- : percentage change in water price due to trade in Region d
- p_PW0_AGR

 $QW0 \quad AGR(d)$

: percentage change in water price after the initial shock and before trading.

Labour Share of Agriculture

8-9 Nov, 2016

UCL Institute for Sustainable Resources

Regions	Watershed		Restriction Duration (Days)	Water Ristriction (%)		
		Facility		Clean Water	Industrial Water	Agricultural Water
Kanto	Nakagawa River		10	10	10	10
	Tonegawa River	Upper Stream 8 Dams	38	30	30	30
	Arakawa River	Futase Dam	5	90		
	Kiso River	lwaya Dam	161	35	65	65
		Makio Dam	169	35	65	65
		Agigawa Dam	129	35	65	65
		Yokoyama Dam	65			70
Chubu	Toyo River	Uregawa Dam	133	35	60	60
Chubu	Yahagi River	Yahagi Dam	114	33	65	65
	Oi River	Ooi Dam	83	20	38	38
	Tenryu River	Sakuma Dam	72	10	30	30
	Kushida River	Hachisu dam	4	10	20	20
	Kumozu River	Kimigano Dam	4	10	20	20
	Yodo River	Miwa Dam	35	20	20	20
		Murou Dam	74	58		13
		Kizugawa	8	10		10
Kinki		Hitokura Dam	90	30		40
	Kako River	Kakogawaoozeki Dam	63	30	30	30
	Ibo River	Hikihara Dam	58		90	50
	Kino River	Saruya Dam	20	15	15	30
	Takanashi River	Shinnaruhagawa Dam	103	50	70	80
	Asahi River	Asahikawa Dam	145	20	30	50
Chugoku	Ota River	Chiden	85	27	60	60
Спадока	Gono River	Haji dam	85	27	60	60
	Ashida River	Mikawa dam	143	30	68	90
	Saba River	Shimajigawa Dam	87	20	20	20
	Yoshino River	Sameura Dam	121	48.5	48.5	48.5
Shikoku		Yanase dam	87	5	57	22.4
	Shigenobu River	Ishitegawa dam	156	42		67
	Niyodo River	Oodo Dam	19			56
	Naka River	Kominono Dam	10		20	5
	Monobe River	Nagase Dam	15			25.8
Kyushu	Chikugo River	Egawa Dam	121	63	63	63

Water SDGs and Future Water Management Symposium

Source: Kawashima and Takahashi (1995)

8-9 Nov, 2016

Water Usage Pattern

