

# Price variation in network models of international food-commodity markets.

#### Craig R. Shenton<sup>1</sup>, Spencer A. Thomas<sup>2</sup>, David J.B. Lloyd<sup>2</sup>, and Angela Druckman<sup>1</sup>

<sup>1</sup>Centre for Environmental Strategy, University of Surrey, <sup>2</sup>Department of Mathematics, University of Surrey







# Contents

- Network models of trade
- Local network motifs
- Results
- Model validation



Global Food Security November 9-10, 2015





UCL Institute for Sustainable Resources

Price variation in network models of international food-commodity markets. Craig Shenton

Estonia



#### Local Network Motifs



Figure: Repeating patterns of trade in international commodity markets [1].

[1] F. Maximiliano, J. Galeano, and C. Hidalgo. 2011. "A complex network approach to international commodity trade markets." *International Journal of Complex Systems in Science*. 1(2):191–201.



Global Food Security November 9-10, 2015



#### **Theoretical Results**



**Figure:** (Left) variation in normalised model prices p as a function of degree k. (Right) price variation as a function of the average nearest neighbour degree  $k_{nn}$ .





#### **Model Results**

| Model Price V | ariation |
|---------------|----------|
|---------------|----------|

| Country                    | k   | $k_{nn}$  | Price |
|----------------------------|-----|-----------|-------|
| USA                        | 128 | 28        | 4.63  |
| France                     | 94  | 29        | 3.29  |
| Canada                     | 99  | 32        | 3.05  |
| Germany                    | 82  | 29        | 2.84  |
| Ukraine                    | 74  | 31        | 2.40  |
| Russia                     | 78  | 34        | 2.29  |
| Italy                      | 63  | <b>30</b> | 2.13  |
| $\operatorname{Argentina}$ | 72  | <b>34</b> | 2.12  |
| United Arab Emirates       | 31  | 16        | 1.96  |
| Australia                  | 63  | 34        | 1.87  |
| United Kingdom             | 56  | <b>30</b> | 1.85  |
| Netherlands                | 58  | 33        | 1.77  |
| Spain                      | 45  | 26        | 1.75  |

#### Analysis of UN-Comtrade dataset [2]. Wheat market selected over the years 2000-2008.

[2] United Nations Statistics Division. 2014. "United Nations Commodity Trade Statistics Database (UNcomtrade)." (Online) Available at: http://comtrade.un.org/.

**Table:** Local network characteristics of major wheat exporters. Values denote: degree k, average nearest neighbour degree  $k_{nn}$ , and the local equilibrium price p determined by the graphical economy model.



Global Food Security November 9-10, 2015



#### **Model Results**



[3] Kakade, S.M., M. Kearns, L.E. Ortiz,
R. Pemantle and S. Suri. 2004. *Economic properties of social networks*.
Advances in Neural Information
Processing Systems. pp. 633–640.

**Figure:** Linear model of prices as a function of exporter degree. Unlike Kakade et al. [3], we find that *k* is an accurate predictor of price for high values of *k*.





### **Model Validation**



**Figure:** Change in model prices (measured as a percentage change from the mean) over the change in average F.O.B (Free On Board) prices over 2003-2006 [4]. Correlation coefficient r = 0.61, statistical significance (two-tailed T-test)  $p = 0.043^*$  (p = 0.053 with outlier excluded).





# Thank You

email: c.shenton@surrey.ac.uk

