

An integrated, model-based approach to evaluate WASH sector investment options

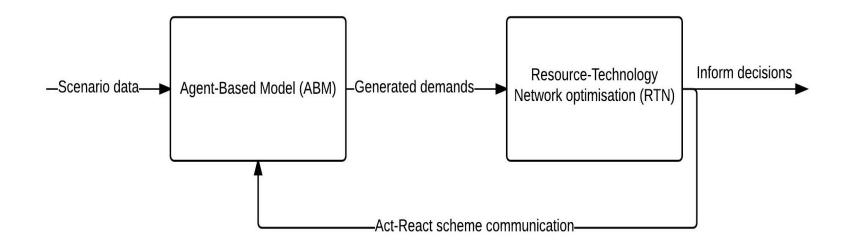
Imperial College London:

Charalampos Triantafyllidis, Xiaonan Wang, Koen H. van Dam & Nilay Shah

Institute for Integrated Economic Research (IIER):

Rembrandt Koppelaar

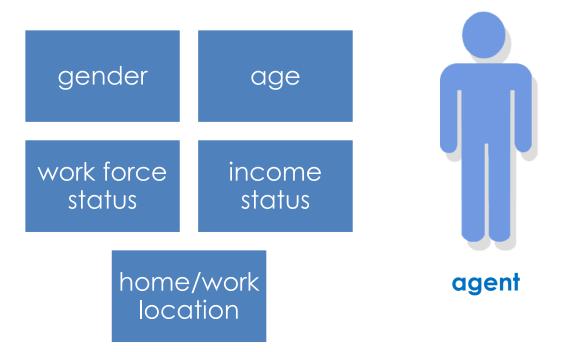
The Ecological Sequestration Trust (TEST):


Stephen Passmore, Andre Head & Peter Head

Funded by : Department for International Development, UK

Motivation

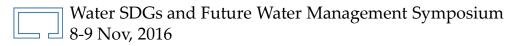
- Water at the core of sustainable development
- Reaching SDGs in Sub-Saharan Africa
- Non-commercial & open-source tool
- Support DFID


resilience.io

Software components

- YAML, for easy human-readable data input
- JAVA, for programming the ABM and RTN modules
- GLPK, as the MILP optimization solver
- R, for post-processing and visualizations

ABM: Agent characteristics


Calculation method

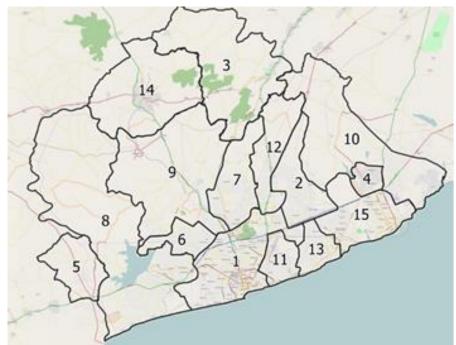
- Initialize population agents with socio-economic characteristics
- Generate a synthetic group (~0.01%)
- Estimate for each agent toilet use throughout the day, based on probability-of-activity model
- Multiply toilet use times by amount of urine and excreta generated per use to yield total amount of accumulation at a toilet site, and total human sewage generated per day

How RTN works

- Production rates satisfy demands
- Technology balance investments
- Amount of raw / imported resources?
- Resource surplus; better to flow or build infrastructure?

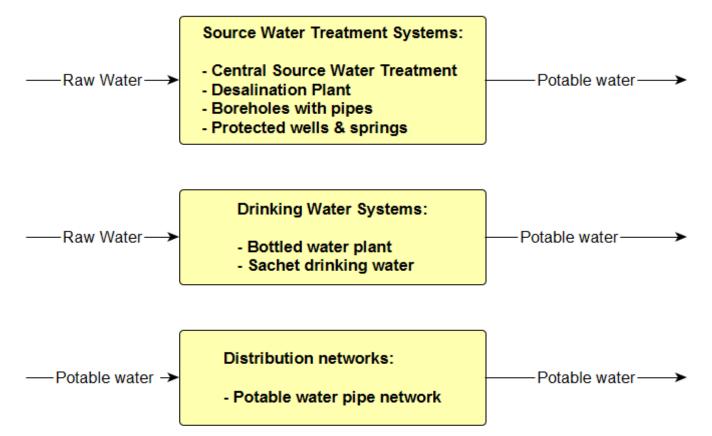
Minimize cost + CO_2 emissions

Calculation method

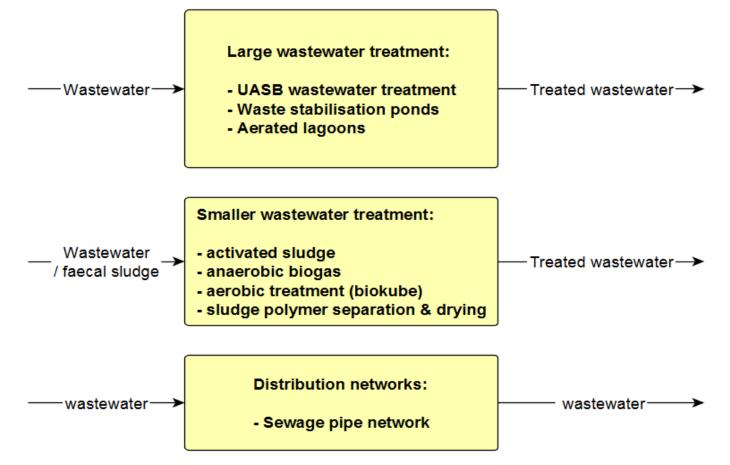

- Initialize model with demands, initial infrastructure etc.
- Set desired objectives for calculation
- How to meet these targets based on a large number of settings?
- Fine constraints to tailor the case to specific realistic policies/needs

Flexible functionality

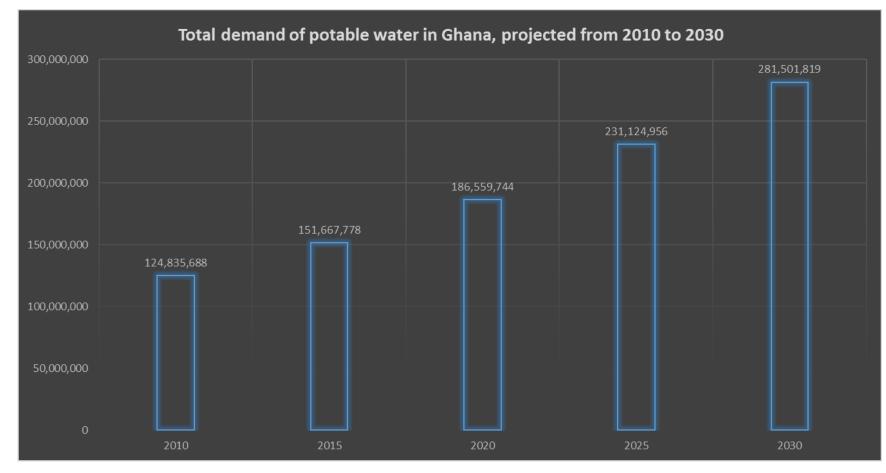
- upper bound network flows (or even make certain only resources able to flow)
- pipe expansion capability
- define which resources can be imported
- geo-localization affects calculations
- define different weights on the optimized metrics
- define percentages of met demands per year, different for each resource in demand
- pre-allocate infrastructure
- specify leaks on flows
- specify minimum production load on technological infrastructure
- Upper bound the capital expenditure costs


Application: WASH in GAMA

- Source water treatment
- Potable water distribution
- Water demands and usage
- Waste water treatment
- Associated costs/investments in different scenarios

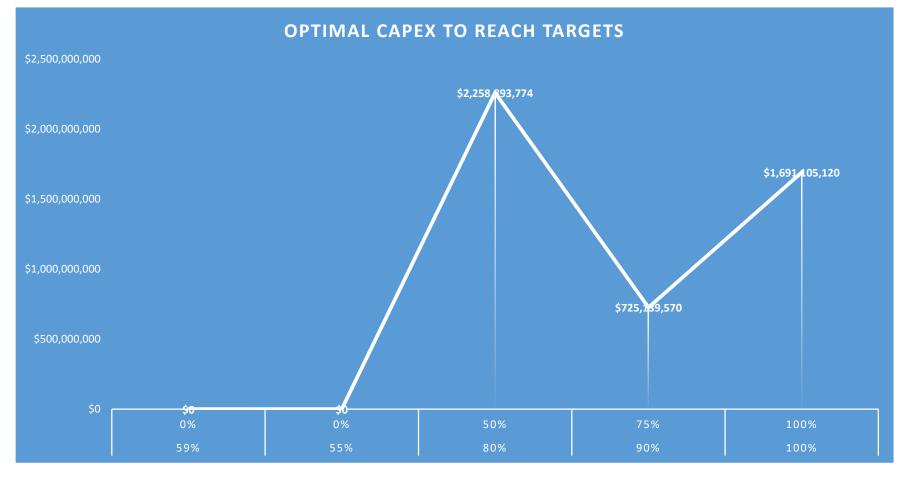


L UC


Technology datasets - potable water

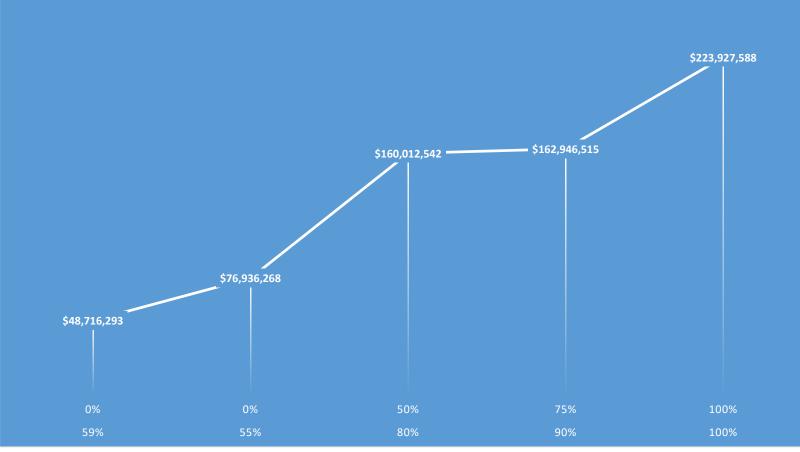
Technology datasets - wastewater

Estimated projection of demands (m³) in clean water

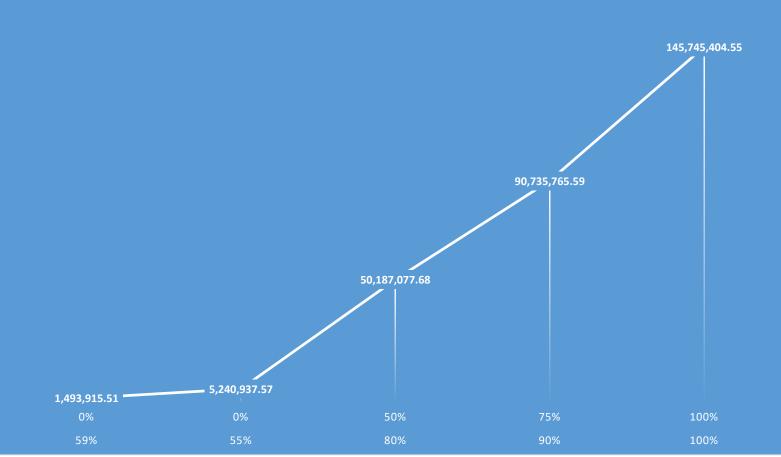

Results-metrics

scenario1	YEARS	Potable m ³ total demand	CAPEX PREALLOCATED	OPTIMAL CAPEX	OPTIMAL OPEX	OPTIMAL CO ₂ (kg)	$CO_2 (g/m^3)$	POTABLE	WASTE	LEAKS
	2010	124,835,688	\$14,870,375,398	\$0	\$19,110,745	836,522.01	3.72	27%	0%	27%
	2015	151,667,778	\$14,870,375,398	\$0	\$19,722,456	884,349.04	3.24	24%	0%	27%
	2020	186,559,744	\$14,870,375,398	\$0	\$19,025,893	870,810.99	2.59	20%	0%	27%
	2025	231,124,956	\$14,870,375,398	\$0	\$21,098,393	977,075.21	2.35	17%	0%	27%
	2030	281,501,819	\$14,870,375,398	\$0	\$20,109,560	959,621.16	1.89	15%	0%	27%
scenario2										
	2010	124,835,688	\$14,870,375,398	\$0	\$19,110,745	836,522.01	3.72	27%	0%	27%
	2015	151,667,778	\$16,097,080,996	\$0	\$39,636,526	4,638,937.10	16.99	26%	0%	27%
	2020	186,559,744	\$17,394,890,493	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE
	2025	231,124,956	\$17,394,890,493	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE
	2030	281,501,819	\$17,394,890,493	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE
scenario5										
	2010	124,835,688	\$14,870,375,398	\$0	\$48,716,293	1,493,915.51	6.65	59 %	0%	27%
	2015	151,667,778	\$16,097,080,996	\$0	\$76,936,268	5,240,937.57	19.20	55%	0%	27%
	2020	186,559,744	\$17,394,522,093	\$2,258,893,774	\$160,012,542	50,187,077.68	149.45	80%	50%	24%
	2025	231,124,956	\$17,394,149,893	\$725,139,570	\$162,946,515	90,735,765.59	218.10	90%	75%	20%
	2030	281,501,819	\$17,393,777,743	\$1,691,105,120	\$223,927,588	145,745,404.55	287.63	100%	100%	20%

Optimal inputs of electricity and labour

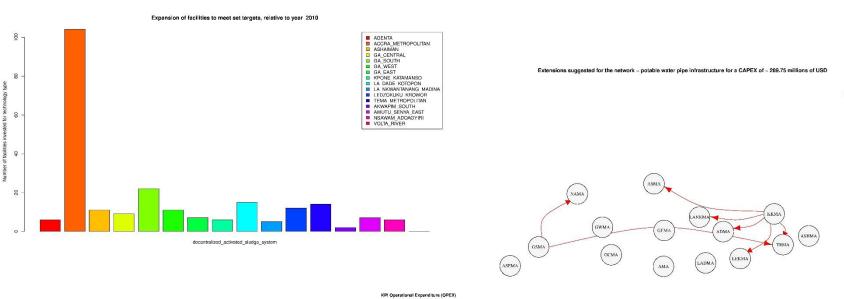

scenario 1	YEARS	electricity(MJ)	labour hours	electricity (kW)	kW/m ³	FTEs (year)
	2010	34,057,459.81	1,233,155.38	9,460,405.51	0.04	593
	2015	36,311,048.73	1,210,954.06	10,086,402.43	0.04	582
	2020	37,494,494.26	1,051,558.59	10,415,137.30	0.03	506
	2025	39,435,232.27	1,193,971.69	10,954,231.20	0.03	574
	2030	41,627,900.65	980,209.57	11,563,305.74	0.02	471
scenario 2						
	2010	34,057,459.81	1,233,155.38	9,460,405.51	0.04	593
	2015	292,506,850.33	2,018,503.40	81,251,902.94	0.30	970
	2020	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE
	2025	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE
	2030	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE	INFEASIBLE
scenario5						
	2010	54,537,556.02	7,791,664.82	15,149,321.13	0.07	3,746
	2015	428,311,009.96	9,004,383.88	118,975,280.64	0.44	4,329
	2020	709,591,516.87	14,191,913.54	197,108,754.84	0.59	6,823
	2025	934,579,308.13	11,047,920.40	259,605,363.58	0.62	5,312
	2030	1,333,848,840.16	11,445,309.25	370,513,567.01	0.73	5,503

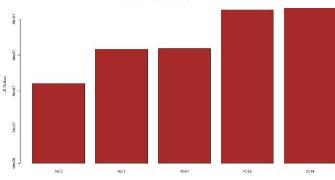
SDGs: Projection of CAPEX in 2010-2015-2020-2025-2030


SDGs: Projection of OPEX in 2010-2015-2020-2025-2030

OPTIMAL OPEX TO REACH TARGETS

SDGs: Projection of CO₂ in 2010-2015-2020-2025-2030

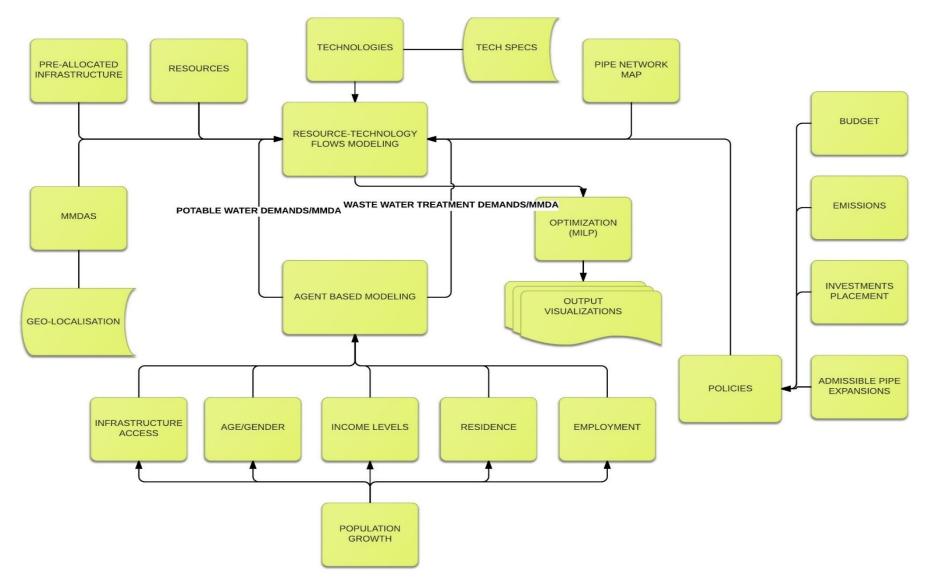




L C L

VOLIA

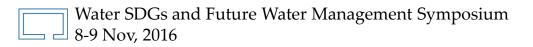
Visuals


SDGs: 2030 optimal flows for potable water

GA_EAST	ACCR
GA_CENTRAL	
ADENTA	AKWA
LEDZOKUKU_KROWOR	GA_W
LA_DADE_KOTOPON	GA_W
GA_WEST	LA_D
LA_NKWANTANANG_MADINA	LEDZ
	ASHA
	AWUT
GA_SOUTH	NSAW -
	GA_C
	GA_E
	LA_N
VOLTA_RIVER	
	ADEN
	TEMA.
	KPON

Functionality - prototype

- Open-source and usable on laptops
- Non-sector specific (energy, water etc.)
- Scales up nicely
- Captures heterogeneity in population via agents
- Realistic representation of infrastructure/flows
- Establish outcomes for planning and projects
- Modify input data easily once set


^AUCL

UCL Institute for Sustainable Resources

L

Thank you for your attention!!!

