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Abstract. Falls from façades due to defects pose safety threats to public and require regular 
inspections. Conventional inspection methods are manual and based on the expertise of inspectors 
resulting in undetected defects and subsequent incidents and accidents. Opportunities that enable 
vision-based identification of defects, such as deep learning (DL), are available but require abundant 
labelled images for robust solutions. Yet, data collection and labelling for domain-specific tasks are 
expensive and time-consuming, resulting in limited training data and/or imbalanced datasets. 
Previous studies have successfully employed various DL architectures to increase model accuracies 
for detecting façade defects but were observed to be limited due to imbalanced and/or small datasets. 
The aim of this study is to mitigate the problem of data scarcity by deploying various combinations 
of data augmentation techniques and evaluating the accuracy of models developed using the 
augmented data produced by these techniques. We applied transfer learning using Mask R-CNN and 
incorporated two novel data augmentation approaches (CutMix and MixUp) along with traditional 
techniques such as geometric transformations. The accuracies of models in multi-defect detection 
are evaluated. 

1. Introduction 

The problem of falling debris from building façades in densely populated cities is a serious 
issue that has resulted in deaths (most recent happening in 2019 in NYC) and injuries, despite 
the implementation of compulsory facade inspection programs (Otterman and Haag, 2019). 
Frequent complaints about debris falls from façades is another indicator of unsafe façades (e.g., 
the Department of Buildings (DOB) has received over 1,800 citizen complaints annually  
regarding façade safety in the last decade)(DOB, 2022).  The current traditional approach to 
inspections is plagued with limitations, including unsafe working conditions and inconsistent 
results. The urgent need to improve facade inspections calls for the exploration and 
implementation of safer and more accurate autonomous inspection options, such as the use of 
drones, robots, and deep learning techniques. 
Autonomous defect inspection enables a more robust and dependable approach to overcome 
the limitations of conventional inspection methods. DL techniques can automatically identify 
façade defects while drones and robots can efficiently and quickly collect vast volumes of data 
from building façades to be used in these algorithms. However, the main challenge is to ensure 
that the training of these models includes sufficient coverage of various types of defects, as the 
frequency of defects varies significantly among different façade materials (e.g., concrete, brick, 
glass) and defect types (e.g., spalls, cracks). Certain defects (e.g., rolling block) are less 
frequently observed than others (e.g., cracks), leading to bottlenecks in the DL-based learning 
process and exacerbating data scarcity, resulting in overfitting and bias, particularly for 
underrepresented defect types. Previous research has primarily focused on using various DL 
models to learn from limited data samples to alleviate these issues at the algorithm level. Yet, 
the performance of these models is often limited by the size of the initial dataset used for 
training. This is because these models rely on their ability to generalize to new samples based 
on a limited number of labelled samples, which is highly dependent on the diversity and size of 
the initial training dataset. As a result, if the initial dataset is too small or lacks diversity, the 
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model may not generalize well to new samples or classes, ultimately leading to poor 
performance and accuracy. To ensure robust and generalizable models, it is crucial to train them 
on a wide range of scenarios and to expand the training dataset to increase its variety and size. 
Data augmentation and transfer learning are two techniques commonly used in the machine 
learning domain to address data scarcity problems and improve model accuracy and 
performance. Data augmentation involves applying various transformations to existing data 
samples to increase the dataset’s diversity and size. This helps balance the sample distribution 
across different classes. Transfer learning involves adapting a pre-trained model on a large and 
diverse dataset to solve a related problem with a smaller dataset. This approach leverages the 
learned features and weights from the pre-trained model, enhancing the model's ability to learn 
from limited data and addressing data scarcity. This research aims to determine the optimal 
combination of data augmentation methods to address data imbalance issues in accurately 
detecting façade defects. To achieve this, the study uses Mask R-CNN transfer learning in 
combination with two new data augmentation methods (i.e., CutMix and MixUp) and 
traditional geometric transformations (i.e., random rotation and flipping), with various 
configurations. 

2. Background 

2.1 Earlier studies on handling data scarcity 
Deep learning models have been increasingly utilized in façade inspections to automate the 
detection of a variety of defects, including but not limited to cracks, spalling, efflorescence, 
delamination, peeling, and blistering. These defects are primarily identified through two main 
approaches: object detection and semantic segmentation. Object detection techniques involve 
localizing the defects within an image by drawing bounding boxes around them, while semantic 
segmentation goes a step further by labelling each pixel in the image with the corresponding 
defect type, providing a more comprehensive understanding of the defect characteristics such 
as area of effect and shape. Both approaches have been applied in the context of convolutional 
neural networks (CNNs), which excel at automatically extracting relevant features for defect 
classification. While these studies have demonstrated success in distinguishing multiple defect 
classes and improving the efficiency of façade inspections, there is still room for enhancement 
in model performance.  
To address data scarcity, researchers have proposed solutions that can be classified into two 
categories: data-level and algorithm-level solutions. Algorithm-level solutions improve deep 
learning performance with limited data through techniques like few-shot classification(Cui et 
al., 2022), meta-learning(Guo et al., 2020),  semi-supervised learning(Guo et al., 2021), and 
transfer learning(Wang et al., 2022). These methods target underrepresented classes and use 
uncertainty filters to enhance model accuracy. However, these solutions are mainly used for 
image classification rather than detection and segmentation tasks. Transfer learning repurposes 
pre-trained models for new tasks and can be combined with data augmentation for detection 
and segmentation tasks.  Data-level solutions improve a model's learning by expanding data 
size, variety, and representation. Some prevalent data-level techniques include data synthesis, 
data resampling, and data augmentation. Synthesis uses GANs to create realistic synthetic data. 
Resampling adjusts data distribution by oversampling/undersampling under/overrepresented 
classes, while augmentation transforms existing data to increase diversity and size using vanilla 
augmentations like geometric transformations (e.g., flipping, cropping, translating, colour 
change, etc.) MixUp (Zhang et al., 2017) and CutMix (Yun et al., 2019) augmentations have 
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been successful in enhancing the performance of DL algorithms and addressing data scarcity 
issues, gaining popularity in computer science. However, the efficacy of these approaches in 
increasing the performance of detecting façade defects with defect characterization (i.e., 
through segmentation models), is yet to be explored.   

2.2 Data Augmentation Techniques in a Nutshell 
Data augmentation techniques aim to increase the size of training datasets through methods 
such as data warping or oversampling. Simple transformations like cropping and flipping were 
initially successful examples of data augmentation(Shorten and Khoshgoftaar, 2019). Data 
warping involves preserving the associated label while transforming an image using techniques 
like geometric and color transformations or random erasing. Oversampling methods increase 
the representation of underrepresented classes in a dataset. They generate artificial images and 
labels by either creating new samples from scratch (using generative adversarial networks) that 
resemble real images or by mixing existing samples (using methods such as CutMix and 
MixUp), which combine two or more images to create a new, synthetic image. This study 
evaluates the effectiveness of data augmentation methods, including geometric transformations 
and image mixing, for defect detection segmentation. Based on our knowledge, this is the first 
study in the automated facade defect detection domain that uses image mixing methods for data 
augmentation to increase the performance of a deep learning algorithm. 

Geometric Transformations. These augmentation techniques involve making changes to the 
geometric attributes of images. They are typically simple to implement and have great potential 
to improve model performance. In this study, we explored two traditional geometric 
transformation methods: horizontal flipping and random rotation. Horizontal flipping flips an 
image horizontally along both rows and columns, while random rotation includes rotating an 
image randomly by a specified angle between 0° and 360°. The centre of rotation can be defined 
manually, but it is usually set to the centre of an image. 

Mixing images. This technique merges different images to create inter-class (i.e., a synthetic 
image generated by mixing two images) samples, enhancing the model’s generalization and 
ability to handle imbalance issues. In this paper, we used two different mixing image strategies: 
MixUp and CutMix augmentation. Data augmentation techniques such as MixUp and CutMix 
generate new images by combining random pairs of training images and their corresponding 
labels. MixUp involves linearly interpolating the pixel values and labels of two images to create 
a new image. In CutMix, patches of one image are cut and pasted onto another, with the 
corresponding label being proportional to the size of the patch. Figure 1 illustrates both 
augmentation techniques.    

 

Figure 1:   MixUp and CutMix augmentations 
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2.3 Figures Mask R-CNN Model Architecture and Transfer Learning in a Nutshell 
Mask Region-based Convolutional Neural Network (Mask R-CNN) is a two-staged, state-of-
the-art deep learning model designed for object detection and instance segmentation tasks. (He 
et al., 2017). The overview of the model’s architecture is shown in Figure 2 (He et al., 2017). 
The model has two main stages. In the first stage, the model generates proposals for potential 
object regions (for example rectangular bounding boxes enclosing areas of a façade that have 
signs of damage) from the input image, and in the second stage, it predicts the class of objects, 
defines bounding boxes, and generates pixel-level masks based on the generated proposals.  

 

Figure 2:   Mask R-CNN model architecture (source: He et al., 2017) 

In computer vision, a pre-trained convolutional neural network (CNN) is typically used as a 
backbone architecture during training to generate feature maps from an input image. Feature 
maps are representations (such as edges, corners, textures, or more complex patterns that are 
specific to an object) capturing patterns in the image that help the model understand and identify 
objects. The Region Proposal Network (RPN) then utilizes these feature maps to produce a 
collection of object-bounding boxes or "Region of Interests" (RoIs), indicating potential areas 
of the image containing an object. The RoIs are passed through the RoI Align layer to fix any 
spatial misalignment between extracted features and the input image. Then, the model adjusts 
bounding box coordinates and assigns an object category and binary mask classifier-branches, 
which generate pixel-level segmentation masks for each object simultaneously (He et al., 2017). 
In transfer learning, a pre-trained backbone trained on a large dataset is used to extract feature 
maps. The RPN, classification and bounding box regression, and binary mask classifier-
branches are added based on our dataset and trained from scratch on our custom dataset.  

3. Methods 
The objective of this study is to enhance the accuracy of a model capable of executing instance 
segmentation on images of building façades. The model is designed to detect and classify two 
types of defects: erosion and efflorescence. Erosion is characterized by small cavities on the 
surface of the facade due to deterioration over time, while efflorescence occurs when salts 
dissolved by water become visible as white substances on the porous façade material such as 
brick.  Examples are provided in Figure 3. To achieve our goal, we combined data augmentation 
techniques, which are geometric transformations (horizontal flips and random rotations) and 
image mixing methods (MixUp and CutMix) with a pre-trained Mask R-CNN model 
architecture using the ResNet-50 FPN backbone.  
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Figure 3: Images showing efflorescence and erosion defects 

Research method is composed of a comprehensive three-staged workflow: i) Dataset 
preparation for training, ii) Configuring hyperparameters, implementing augmentations and 
trainings and iii) Evaluation of model performances trained with the augmentation methods. 
First, we pre-processed our façade dataset by resizing, cleaning, and annotating to ensure 
optimal model performance. Second, we used augmentation methods, including flips, random 
rotations, and image mixing (i.e., MixUp and CutMix) to increase the diversity of defects in the 
dataset and improve the model’s generalization and learning capabilities. We trained our model 
with different combinations of augmentation methods and fine-tuned hyperparameters for 
optimal performance. We evaluated the model's effectiveness by analyzing performance 
metrics (e.g., average precision and recall) on validation dataset and comparing it with 
alternative approaches after each training to identify the optimal augmentation configuration 
that fits  to this problem domain.  

3.1 Dataset Preparation for the Training  
A dataset consisting of 228 raw images of building façades with 4,056 x 3,040 resolution was 
captured via an unmanned aerial vehicle. To enhance the diversity of our dataset, an algorithm 
similar to a sliding window of size 512x512 with 20% overlap was employed to extract multiple 
views from the same image. Subsequently, we eliminated any images that did not include façade 
portions or contained unwanted elements such as shadows. We further disregarded the images 
that did not contain erosion and efflorescence resulting in a total of 496 cropped images. After 
pre-processing the images, we annotated them using Computer Vision Annotation Tool 
(CVAT) to generate segmentation masks for our deep-learning model training. We registered 
our custom dataset, which consists of images and their corresponding instance and label 
segmentation masks. Data registration is an essential step when working with deep learning 
libraries, enabling to convert the data into a format compatible with chosen framework. This 
process ensures that the dataset is formatted correctly, and that the library can access and 
process the data during training and evaluation. Figure 4 gives and overview of the process for 
preparing the dataset with an example of the cropping process of an original high-resolution 
image with sliding window from (a) a raw dataset, (b) 512x512 cropped images, (c) its 
corresponding segmentation (i.e., object class boundaries) and instance (i.e., individual object 
instances) masks after annotations, and (d) the corresponding registered image, representing the 
combined image with overlaid segmentation and instance masks for clear visualization of object 
classes and individual instances in the dataset. 
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Figure 4:   The process of preparing the training dataset. Each colour in the segmentation mask 
represents a different defect class, each colour in instance mask represents a unique defect instance. 

3.2 Finetuning, Configuring Hyperparameters, Augmentations and Training  
We used ResNet-50 FPN pre-trained on COCO dataset as the backbone for our Mask R-CNN, 
where ResNet-50 FPN is a pre-trained CNN that has been shown to be effective for a wide 
range of computer vision problems. We applied transfer learning and fine-tuned the base model 
on our custom dataset. In this process, we trained the model to identify the specific classes of 
erosion and efflorescence, by adjusting the pre-existing weights of the pre-trained model and 
setting the number of output classes to two, representing defects. Overall, this approach enabled 
the model to accurately detect and segment erosion and efflorescence and accelerate the 
learning process while using datasets generated by a combination of data augmentation 
techniques. We fine-tuned the model's hyperparameters, including the number of workers, 
learning rate, and maximum iterations, to optimize its performance. The number of workers 
refers to the parallel data loading processes, the learning rate determines the step size of the 
optimization algorithm during training, and the number of iterations is the total times the 
algorithm processes the data and updates the model weights.  We set the number of workers as 
2 (default recommended) and the number of classes to 2 classes (erosion and efflorescence). 

3.3 Evaluation of Model Performances Trained with Augmentation Methods 

Upon completing each training iteration, we assessed the performance of our trained models on 
the validation set with never used images. We employed the COCO Evaluator, which is a 
widely used evaluation tool for assessing object detection and instance segmentation 
models. During this stage, we thoroughly examined the overall effectiveness of the different 
augmentation techniques implemented. The performances of the trained models were assessed 
on the validation dataset by comparing the predicted objects with the ground-truth objects in 
terms of detection and segmentation. In this study, metrics such as intersection over union 
(IoU), precision, recall, and average precision (AP) were employed to gauge the effectiveness 
of instance segmentation and object detection. The overall process of calculating AP and AR 
remains the same for both tasks; the only difference occurs in the way of calculating IoU. AP 
is a widely used evaluation metric in object detection and instance segmentation tasks because 
it considers both precision and recall. It measures the area under the precision-recall curve and 
provides a single number that summarizes the overall performance of a model. The higher the 
AP value, the better the model's performance. 
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IoU is a metric used to evaluate model performance in object detection and segmentation. In 
object detection, it measures the overlap between the predicted and ground-truth bounding 
boxes, while in segmentation, it measures the overlap between the predicted and ground-truth 
masks. When the prediction is correct, and the IoU value is higher than the given threshold, the 
prediction is considered a true positive (TP); when IoU is below the threshold, it is deemed a 
false positive (FP). The undetected ground truth objects are considered to be False Negative 
(FN). Using the TP, FP, and FN values, we calculated the precision and recall as follows: 

Precision = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)																																																											(1)	

Recall = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)	 																																																							(2)	

AP has been calculated for different IoU thresholds and object sizes. AP50 and AP75 are 
average precision metric, calculated for the corresponding IoU thresholds, set to 0.50 and 0.75, 
respectively. When the IoU threshold is set to 0.50, it means that a predicted bounding 
box/segmentation mask is considered correct if it overlaps with the ground truth annotation by 
at least 50%.  Similarly, when the IoU threshold is set to 0.75, it means that a predicted bounding 
box/segmentation mask is considered correct only if it overlaps with the ground truth annotation 
by at least 75%. AP values for different object dimensions offer an understanding of the model's 
performance across a range of defect sizes, including small (area < 32x32 pixels), medium 
(32x32 pixel<= area <= 96x 96 pixels), and large (area > 96x96 pixels). In this study, AP-small 
(APsmall) mainly attributes to performance for small-sized efflorescence instances due to their 
relatively small pixel area.  
Average Recall (AR) is calculated at a fixed number of maximum detections (e.g., 1, 10, or 
100) across different IoU thresholds and object sizes, and it is associated with the model’s 
performance in identifying true positive instances. We also calculate the AP values for specific 
classes to assess how well the model is across different defects, so AP-efflorescence and AP-
erosion are calculated only considering instances belonging to the target classes. 

4. Experimental Design 

4.1 Initial Dataset 
We used a UAV captured 228 high-resolution (i.e., 4,056x3,040) raw façade images of a brick 
building. Multiple perspectives of the same image were generated using a 512x512 sliding 
window with a 20% overlap. After pre-processing, we annotated 526 images with 512x512 
resolution, identifying 5,203 instances of erosion and 2,585 instances of efflorescence.  

4.2 Model Hyperparameters and Augmentation Technique Configurations 
For training and evaluation of models, we utilized Detectron2, a popular library for object 
detection and segmentation that is built on PyTorch (an open-source Python machine-learning 
framework for generating and training deep learning models.) We employed the Mask R-CNN 
architecture with the ResNet-50 FPN backbone as our base model.  
For training configurations, we used a configuration file from Detectron2’s for the Mask R-
CNN with ResNet-50 FPN architecture and specified our training and validation datasets. We 
experimented with several base learning rates (0.0001 and 0.0002) and set different numbers of 
iterations (500-1000-1500-300-5000). We also tested different batch sizes, 128 and 512, while 
we left the number of workers as the default value of two. Finally, we set the number of output 
classes to two since we only dealt with two types of defects. We incorporated data augmentation 
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techniques to improve the model’s generalization, such as random horizontal flips and random 
rotations between 0° and 360°. We defined a custom augmentation pipeline and added it to our 
training configuration. We considered two extra augmentations, MixUp and CutMix and 
defined four augmentation combinations as follows: 

• G: Geometric Transformations (horizontal flipping, random rotation) 

• G-Mix: Geometric Transformations + MixUp 
• G-Cut: Geometric Transformations + CutMix 

• All: Geometric Transformations + MixUp + CutMix 
For the G-Mix and G-Cut configurations, we performed MixUp or CutMix augmentations in 
20% of the images, while the remaining 80% of the images did not have either of these 
augmentations. In the 'All' combination, 20% of the images had mixing augmentations applied. 
Within this 20%, half of the images were augmented with MixUp, and the other with CutMix. 
Additionally, we used recommended alpha values of 0.1 for MixUp and 1.0 for CutMix. 

5. Results and Discussion 
We presented our multi-defect detection model's performance in two tables, highlighting its 
segmentation capabilities. Table 1 provides results on the model's proficiency in segmenting 
defects, using metrics defined above as the percent AP50, AP75, APsmall, APmedium, and APlarge.  
These metrics help us gauge the model's proficiency in segmenting defects concerning IoU 
thresholds (at 50 and 75), as well as its performance on the small, medium, and large regions 
examined by models in defect segmentation. Table 2 combines both metrics and includes 
models’ performance on segmentation per defect type:  efflorescence and erosion. This table 
features AP, representing the overall segmentation performance, along with metrics for 
segmentation performance on specific defect types: APefflorescence, and APerosion (in %). By 
analysing these metrics, we can determine suitable augmentation combinations that enhance 
overall performance of models.  
The results in Table 1 show that the G-Mix augmentation combination provides the best 
performance at the 50% IoU threshold, while the G-Cut combination excels at the 75% IoU 
threshold, with a relatively lower performance then AP50 scores, but closer to G-Mix 
performance at 75% threshold. The 'All' combination offers competitive performance across 
both IoU thresholds and object sizes, especially in medium objects. It is worth mentioning that 
model performance is significantly lower when segmenting defects using small regions in the 
analysis (i.e., APsmall). This requires an explanation, and it only makes sense when Table 2 is 
analysed per defect type.  

Table 1:   Segmentation performance of models trained with given augmentation methods for both 
defects 
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Table 2 presents overall segmentation (AP) performance of models along with their 
performance per defect type. The results indicate that the G augmentation provides the highest 
AP for segmentation. AP results for small, medium, and large regional analysis showed in Table 
1 that a closer look is needed for understanding the low APsmall results. For this purpose, we 
looked at model segmentation performance per defect. Table 2 shows that the AP scores drop 
because of the efflorescence defects where the highest performance for it is via G-Mix (i.e., 
APefflorescence =9.32%). Regarding erosion defects, the models are much better in segmenting this 
defect type, where the models trained with 'All' data augmentation combination get the best 
segmentation performance (APerosion = 43.13%).  

Table 2:   Overall segmentation performance of models trained with given augmentation methods 
across defects and specific to each defect type. 

 
The notable differences in segmentation performance of models for efflorescence and erosion, 
particularly on APsmall can be attributed to several factors, such as the characteristics of the 
defects (e.g., size and aspect ratio) and the imbalanced dataset. Efflorescence defects are in 
general regional, spanning over a façade cutting through several brick surfaces and should be 
labelled as such. When labelling is done at brick surface level and smaller group of pixels 
affected by efflorescence are observed per brick surface, models struggle to detect them per 
brick surface. This discussion indicates that the labelling effort should be changed to label 
efflorescence at the façade surface level instead of at brick level. This will be addressed in the 
future work of this effort. Regardless though, models trained with data augmented using G-Mix 
method perform better in detecting efflorescence as compared to the other combinations.  
In contrast, erosion defects are widely spread at brick surfaces occupy a more significant portion 
of the image pixel-wise, enabling more information for the model to learn and make accurate 
predictions. Aligning with this, our model provided better performance in large objects. This is 
reflected in the higher AP values for erosion compared to efflorescence, as well as the APlarge 
results, which represent the model's performance on larger defects like erosion Additionally, 
the dataset is imbalanced, due to a higher number of large-sized erosion and a lower number of 
smaller-sized efflorescence, where the efflorescence instances typically have a smaller pixel 
area compared to erosion. This imbalance might cause the model to be more biased towards 
segmenting larger defects (such as erosion), resulting in higher AP values for erosion and better 
performance in APlarge than APsmall. 
As a result of this study, it is apparent that data augmentation methods significantly effect 
segmentation capabilities of models trained with datasets generated from these methods. Our 
evaluations in defect detection on façade surfaces showed that G-Mix method provides 
meaningful new images that help boost model performance in segmentation. However, 
selecting the most suitable augmentation combination depends on the particular needs of the 
application, such as on overall performance, or the importance of accurately segmenting 
specific defect types like efflorescence or erosion. Regardless, in situations where addressing 
the imbalanced dataset is crucial, exploring different augmentation strategies or techniques 
tailored for handling imbalanced data could lead to improved performance for the 
underrepresented class.  
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6. Conclusion 
This study demonstrated the potential of combining data augmentation techniques and transfer 
learning with a pre-trained Mask R-CNN model for accurate façade segmentation, specifically 
for erosion and efflorescence defects. The integration of geometric transformations (e.g., 
horizontal flips and random rotations) and image mixing methods (MixUp and CutMix) 
contributed to an improved model performance by addressing data scarcity and increasing the 
diversity of the training dataset. The evaluation of different augmentation combinations showed 
that models trained with G-Mix method based augmented datasets performed better as 
compared to other methods generally, with variations observed when performances are 
compared for each specific defect type. As an ongoing work, we will explore defining a 
labelling strategy that fits the characteristics of each defect analysed and explore additional 
augmentation techniques and the incorporation of algorithm-level solutions to further improve 
the model's performance and generalizability across a broader range of façade materials and 
defect types. 
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