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Abstract. Road roughness indices indicate the condition and cost of road pavement. Traditional 

instruments are labour-intensive and limited in spatial coverage. Embedded sensors in smartphones 

are gaining popularity for estimating road roughness. Smartphone-based roughness index estimation 

(sRIE) systems were developed in the past years. However, there has been no objective evaluation 

of their performance under varying survey speeds, vehicle and mounting configurations in a 

metropolitan environment. This research selected three commercial sRIE Apps and tested them 

using a standardised evaluation framework. The results suggest that one App generates consistent 

results, but the accuracy of sRIE systems should be improved and be made more robust against 

varying practical settings.  

 

1. Introduction  

Roughness induces distress to the pavement surface and diminishes riding comfortability. 

Generally, pavement roughness assessment is needed to validate the quality of newly 

constructed pavement and monitor the existing pavement condition. The pavement roughness 

condition can be described using the international roughness index (IRI), a single roughness 

scale that enables the exchange of pavement roughness information internationally. The IRI is 

calculated by simulating the Quarter Car (QC) model traversing the road profile and 

accumulating the elevation deviation of the body (sprung mass) and the wheel (unsprung mass) 

over the travelled length (Sayers, 1995). Conventionally, measuring the IRI requires direct 

measurement of changes in road profile elevation, which involves expensive equipment and 

complex setup. Thanks to the prolificity and increasing sensing capabilities of smartphones, 

measuring pavement roughness using smartphone sensors has become a viable approach. 

Studies used the vehicle body response measured by a smartphone to estimate the road profile 

(Zhao et al., 2019), or trained machine learning models to directly estimate the IRI from the 

smartphone’s response (Jeong et al., 2020). A detailed review of smartphone-based roughness 

index estimation (sRIE) methods is available in (Yu et al., 2022). 

Studies evaluated the sRIE systems using various approaches. An sRIE was tested using a single 

vehicle type under different constant speeds (Wix, 2016). Similarly, two sRIE systems were 

evaluated by adopting constant speed and single vehicle type (Shah et al., 2017). In recent 

studies, varying speeds, mounting and vehicle types were introduced to mimic the real-world 

application environment of the sRIE system. For instance, sRIE systems were evaluated by 

adopting various mounting types under different constant speeds (Hossain et al., 2019), and 

using four different vehicle models and mounting locations (Botshekan et al., 2021). The 

commonly used statistic is the coefficients of the linear regression relationship between the 

smartphone and the reference instruments (Douangphachanh and Oneyama, 2014), while a 

direct spatial plot of the reference and smartphone measurements was applied to compare their 

performance (Xue et al., 2020). However, the existing studies applied their own evaluating 

statistical measures, which made the cross-comparison between different sRIE challenging, and 

as a result, there is no objective evaluation of the current sRIE systems. To address this gap, 
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this study evaluates three commercial sRIE systems in a real-world application context, under 

the same configuration combinations, attributed by varying speed, vehicle model and mounting. 

The rest of the paper is organised as follows. Section 2 elaborates on the adopted statistical 

measures. Section 3 demonstrates the experimental setup. Section 4 presents the results. Section 

5 entails a discussion. Section 6 concludes the paper. 

2. Evaluation statistical measures 

sRIE systems are affected by surveying speed (Galagoda and Lanka, 2019), vehicle type (Islam 

et al., 2014), and mounting configuration (Bridgelall et al., 2019). The following statistical 

measures test the repeatability and accuracy performance of an sRIE system under the variation 

of these settings. Repeatability concerns the system’s ability to produce the consistent 

smartphone-measured IRI (sIRI), while accuracy represents how close the results of the tested 

system are to the reference IRI (rIRI) values. 

2.1 Repeatability test 

The repeatability performance under each practical setting is reported using two statistical 

measures, namely the coefficient of variation (𝐶𝑜𝑉) of each measuring segment and the 𝑅2 of 

the sIRImean vs sIRIindividual linear regression model.  

Coefficient of variation 

The 𝐶𝑜𝑉 of a segment measures the relative dispersion of the measurements around their mean 

(the ratio of standard deviation to the mean). This measures the variation of measurements in 

each segment.  

For each segment, there is: 

𝐶𝑜𝑉 =
𝜎𝑛

𝑋𝑛
̅̅̅̅

 (1) 

where 

𝜎𝑛 = √
∑ (𝑋𝑛𝑖−𝑋𝑛̅̅ ̅̅ )2𝑁

𝑖=1

𝑁−1
; the sample standard deviation of measurements at the nth segment   

𝑋𝑛
̅̅̅̅ =

∑ 𝑋𝑛𝑖
𝑁
𝑖=1

𝑁
; the arithmetic mean of measurements at the nth segment    

𝑁: the total number of repetitive runs 

𝑋𝑛𝑖: the measurement on segment n from ith run 

𝐶𝑜𝑉𝑚𝑒𝑎𝑛  is the average of the 𝐶𝑜𝑉  of all segments in a route and indicates the system’s 

performance on the entire route, and is calculated as:    

𝐶𝑜𝑉𝑚𝑒𝑎𝑛 =
∑ 𝐶𝑜𝑉𝑛

𝑛𝑠
𝑛=1

𝑛𝑠
 (2) 

where 

𝐶𝑜𝑉𝑛:  the coefficient of variation of measurements at the nth segment    

𝑛𝑠: total number of segments 
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Correlation with the mean measurements 

In addition to the 𝐶𝑜𝑉𝑚𝑒𝑎𝑛, the scatter plot of individual data points compared to the mean 

provides a visual representation of the consistency of the sRIE system. In this plot, the mean of 

the five measurements is plotted on the x-axis, while the five measurements from the 

smartphone are plotted on the y-axis. A linear regression model can be constructed between the 

individual sIRI values (dependent variable) and the mean of sIRI values (independent variable). 

The 𝑅2  of the regression model is important to report, as it shows how closely individual 

measurements fit the regression line and explains the total residuals of the dependent variables 

to the model. 

𝑠𝐼𝑅𝐼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑘(𝑐,𝑚) ×  𝑠𝐼𝑅𝐼𝑚𝑒𝑎𝑛 + 𝑏(𝑐,𝑚) (3) 

where 

𝑠𝐼𝑅𝐼𝑚𝑒𝑎𝑛: the mean of IRI of five repetitive runs 

𝑠𝐼𝑅𝐼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙: the IRI of one particular run  

𝑘(𝑐,𝑚), 𝑏(𝑐,𝑚): regression coefficients for each vehicle (𝑐) and mounting (𝑚) setting 

2.2 Accuracy test 

Besides testing the repeatability, the sRIE system’s measurement accuracy is vital. A 

quantitative accuracy test determines the proximity of the sRIE system measurements to the 

benchmark IRI derived from the reference tool. The accuracy results for each practical scenario 

are presented using two metrics, namely the average measurement error (𝜀𝑚𝑒𝑎𝑛), and the 𝑅2 of 

the sIRI vs rIRI linear regression model.  

Average of measurement error 

The average measurement error describes the difference between the sIRI and rIRI in an entire 

survey run. It is a percentage that directly reflects the accuracy of an sRIE system and is defined 

as: 

𝜀𝑚𝑒𝑎𝑛  = |
1

𝑛𝑠
∑

𝑠𝐼𝑅𝐼𝑛𝑚𝑒𝑎𝑛
− 𝑟𝐼𝑅𝐼𝑛

𝑟𝐼𝑅𝐼𝑛

𝑛𝑠

𝑛=1

| (4) 

where 

𝑠𝐼𝑅𝐼𝑛𝑚𝑒𝑎𝑛
: Average of five sIRI on the nth segment    

𝑟𝐼𝑅𝐼𝑛: reference IRI on the nth segment   

𝑛𝑠: total number of segments in a testing route 

Correlation with the reference IRI  

The scatter plot of sIRI data points versus the rIRI provides a visualisation of how sIRI 

measurements distribute with respect to the benchmark values.  Using least squares regression, 

a linear regression model along with the coefficient of determination could be determined 

between the rIRI and the sIRI: 

𝑠𝐼𝑅𝐼 = 𝑘(𝑐,𝑚) ×  𝑟𝐼𝑅𝐼 + 𝑏(𝑐,𝑚) (5) 
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where 

𝑟𝐼𝑅𝐼: reference IRI of a segment 

𝑠𝐼𝑅𝐼: smartphone measurements on a segment 

𝑘(𝑐,𝑚), 𝑏(𝑐,𝑚): regression coefficients for each vehicle (𝑐) and mounting (𝑚) setting 

The coefficient of determination, or 𝑅2 , is a measure that provides information about the 

goodness of fit of a model. In the context of regression, it is a statistical measure of how well 

the regression line approximates the actual data.  

3. Experiment 

A field study was conducted to evaluate sRIE systems in an urban area. The selected route is 

from metropolitan Melbourne and has a total length of 10km. Specifically, the experiment 

adopted one reference instrument and three smartphone systems; two mounting locations and 

two vehicle types were tested. Five smartphone runs and three profiler runs were conducted.  

Speed. A constant travelling speed was not maintained during the survey, as the route contains 

traffic lights. However, the operator maintained the speeds to a maximum of 60 and 80 km/h, 

respectively. Five runs were conducted at each speed.  

Vehicle and mounting setup. Two vehicle models employed in the experiments are a Ford 

Ranger (denoted as 𝑈 for ute) and a Volkswagen Golf (denoted as 𝐻 for hatchback). The tested 

sRIE systems were mounted on both windshield (denoted as W) and dashboard (denoted as D), 

as shown in Figure 1(a).  

 
(a) 

 
(b) 

Figure 1 (a) the in-cabin set up and (b) the ground-truth survey vehicle 

Reference instrument. The Australian Road Research Board (ARRB) inertial profiler was 

chosen to obtain the ground-truth road profile and IRI. The profiler is equipped on the survey 

vehicle, as shown in Figure 1(b). 

4. Results 

This section demonstrates the results of the experiment. To provide a direct illustration of the 

smartphone’s results, the sIRI and rIRI results from one run are shown in Figure 2. The practical 

setting is "Dash| Windshield at 60 km/hr."  



5 

 

 
Figure 2 Plot of sIRI and rIRI measurements of Wellington Rd (App3) 

4.1 Repeatability test 

Coefficient of variation. The mean coefficient of variation (𝐶𝑜𝑉𝑚𝑒𝑎𝑛) represents the average 

of the coefficient of variation for all segments within a test route, demonstrating the relative 

spread of the five measurements around their average. The results under all practical settings 

are presented in Table 1. The 𝐶𝑜𝑉𝑚𝑒𝑎𝑛 sits in a range of 7.80 to 21.64, and a lower 𝐶𝑜𝑉𝑚𝑒𝑎𝑛 

suggests a better repeatability performance. Among the three systems, App3 produced 𝐶𝑜𝑉𝑚𝑒𝑎𝑛 

of approximately10 in practical settings.  

Table 1 𝐶𝑜𝑉𝑚𝑒𝑎𝑛 of three Apps 

Speed (km/h)  Vehicle Mounting App1 App2 App3 
 H D 14.158 16.743 12.042 

60  W 13.662 11.479 11.397 
 S D 12.063 20.511 7.804 
  W 12.411 11.393 9.454 
 H D 16.754 16.678 11.301 

80  W 15.152 17.599 13.575 
 S D 13.830 21.640 8.967 
  W 13.766 12.816 9.089 

  Mean 13.975 16.107 10.453 

Correlation with the mean measurements. The 𝑅2 of the linear regression model between 

the individual sIRI values (dependent variable) and the sIRImean values (independent variable) 

demonstrates the measurement consistency. The results of the sIRI - sIRImean regression are 

shown in Figure 3 to Figure 5, with each plot displaying measurements of sIRI vs sIRImean under 

two survey speeds, differentiated by colours. The vehicle and mounting configuration is 

denoted on top and to the left of the plots. The axial is limited by an IRI value of 8 mm/m. 

“SciPy” was used for regression analysis with the coefficients 𝑘  and 𝛽  estimated by “least 

square estimates”, minimizing the sum of squared residuals in the sample (Hastie et al., 2021).  

App 1. The 𝑅2 values are approximately 0.7 which is significantly lower than the other two 

Apps.  

App 2. The  𝑅2 is higher when the smartphone is mounted on the windshield. Survey speed 

does not make a significant impact.  

App 3. App3 demonstrated the best repeatability performance, as evidenced by significantly 

higher  𝑅2 values. The performance is consistent across different practical settings. 
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Figure 3 sIRI vs sIRImean plot (App1) 

 

 
Figure 4 sIRI vs sIRImean plot (App2) 

 

 
Figure 5 sIRI vs sIRImean plot (App3) 
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Accuracy test 

Average of measurement error. The 𝜀𝑚𝑒𝑎𝑛 is calculated as the percentage difference between 

sIRI and rIRI measurements, and it reflects the overall accuracy performance of the sRIE 

systems. As Table 2 shows, the 𝜀𝑚𝑒𝑎𝑛  sites in a range of 0.085 to 0.536, and a lower 

𝜀𝑚𝑒𝑎𝑛 indicates a better accuracy. Among the three Apps, App2 produced a lower 𝜀𝑚𝑒𝑎𝑛. 

Table 2 𝜀𝑚𝑒𝑎𝑛 of three Apps 

Speed (km/h)  Vehicle Mounting App1 App2 App3 
 H D 0.274 0.142 0.259 

60  W 0.536 0.085 0.208 
 U D 0.151 0.269 0.313 
  W 0.392 0.125 0.262 
 H D 0.095 0.253 0.251 

80  W 0.471 0.201 0.154 
 U D 0.175 0.305 0.280 
  W 0.207 0.138 0.212 

  Mean 0.288 0.189 0.242 

Correlation with the 𝒓𝑰𝑹𝑰. Linear regression models were created between sIRI and rIRI 

measurements, as shown in Figure 6 to Figure 8. Each figure displays plots of sIRI vs rIRI 

under varying practical settings, with speed distinguished by colours. The dotted 45o line within 

the plot represents a perfect correlation between the smartphone system and the profiler. It is 

noted that the closer the slope is to one and the interest is to zero, the better the smartphone 

system generates measurements comparable to the reference instrument.  

App 1. With increasing speed, sIRI measurements tend to be higher, as indicated by the data 

points for higher speeds situated in the plot's upper region. 

App 2. The performance under two speeds is comparable. The 𝑅2 values of the windscreen are 

significantly higher than that of the dashboard.  

App 3. Overall, the 𝑅2 values are higher than that of the other two Apps and are consistent in 

four practical settings. 

 
Figure 6 sIRI vs rIRI and the regression line (App1) 
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Figure 7 sIRI vs rIRI and the regression line (App2) 

 
Figure 8 sIRI vs rIRI and the regression line (App3) 

5. Discussion  

This study's main goal was to assess the repeatability and accuracy of three commercial sRIE 

systems in a practical application setting. Using the framework proposed by (Yu et al., 2023), 

the evaluation was undertaken in realistic circumstances, including varying speeds, vehicle 

types, and mounting configurations.  

The results of the repeatability tests showed that App3 consistently demonstrated the best 

performance in both the 𝐶𝑜𝑉 and coefficient of determination (𝑅2) for the sIRI vs sIRI mean 

linear regression model. It was observed that the repeatability performance of App1 and App3 

is consistent in the four vehicle-mounting configurations since their statistical measure values 

are close. However, for App2, the repeatability performance on windshield mounting is better 
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than that on the dashboard, as the dashboard CoVmean  approximately doubles that of the 

windscreen; and the dashboard 𝑅2 is 0.2 less the windscreen 𝑅2. It was also noticed that the 

two survey speeds do not significantly affect the repeatability of all three Apps.  

In terms of accuracy, the average measurement error (εmean) results showed that App2 achieved 

the best performance. This suggests that App2 is more accurate in estimating pavement 

roughness, as its sIRI measurements were closer to the reference IRI (rIRI) values. However, 

the correlation with the rIRI results revealed that App3 displayed a higher 𝑅2 values across 

different practical settings. Furthermore, it was observed that survey speed affects the 𝑅2 of 

App1, where the 𝑅2 of the regression line of 80km/h is significantly lower than that of the 

60km/h. Meanwhile, both App2 and App3 generate close εmean and 𝑅2 values in two survey 

speeds.  

These findings provide valuable insights into the applicability in different scenarios. For 

instance, App3 should be selected where repeatability and consistency are of primary 

importance, while App2 or App3 are both preferred in situations where accuracy is the primary 

concern. While the pre-survey setup was completed in accordance with the guidelines provided 

by the sRIE system developers, there is a difference between the mounting setup suggested by 

the developer and what is adopted in the experiment. For instance, App3 requires the 

smartphone to be tagged on the vehicle windscreen using an armless mount. However, such a 

setup was not selected since the identical mounting configuration was adopted for three Apps. 

In summary, the results suggested that: 

• The best repeatability performance of the sRIE system achieved a self-regression 𝑅2 

value of 0.90 across all practical settings.  

• In accuracy test, App3 could achieve an 𝑅2 value of 0.60, correlated with the reference 

instrument. 

• The accuracy performance is to be improved, with a special focus on accommodating 

varying practical settings attributed to vehicle model and mounting configuration. 

This study has limitations. First, it only adopted two options of survey speed, vehicle model 

and mounting configuration, and these are limited practical settings that do not fully represent 

the range of real-world scenarios that the sRIE systems may be tested under. Secondly, the 

mounting setup of App3 does not exactly follow the instructions from the App developer, which 

may induce noises to the raw signal and lead to discrepancies in the intended performance.  

In terms of future research, the mechanistic properties of the mountings could be identified, and 

be integrated to alleviate the mounting variation’s impact on the results. Similarly, vehicle 

uncertainties could be reduced by pre-calibration that considers vehicle geometric and 

suspension properties. The differences between various vehicles could be empirically identified 

from a real field experiment that covers a range of typical passenger vehicles.  

6. Conclusion 

This study evaluated three commercial sRIE systems using an evaluation framework. The tested 

systems surveyed a 10km road in an urban area and the measurement results were compared to 

that surveyed by a profiler. Results showed that App3 is preferred when both the repeatability 
and consistency are of primary importance, while App2 or App3 may be selected in situations 

where the measurement accuracy is critical. This study demonstrates the effectiveness of testing 

multiple sRIE systems using a standardised evaluation framework, and the results suggest that 

special focus to be made improving the sRIE system’s robustness against different vehicle 

models and mounting configurations. 
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