mortality and morbidity from air pollution indoors

There is also an income gradient in smoking prevalence, making low income households more susceptible to the negative impacts of air pollution (R7 income and susceptibility).
There is also an income gradient in smoking prevalence, making low income households more likely to be exposed to tobacco smoke as an indoor air pollutant (R6 income reduces smoking).
It was proposed that more people per house increases indoor air pollution and therefore morbidity (R4 people produce pollution).
Stakeholders also proposed that greater household employment and income could contribute to increased indoor air pollution through greater consumption of new materials (B4).
More people per house increases the relative humidity through breathing and use of water, increasing morbidity as a result of moisture and mould (R5 people produce moisture).
B2 draughtiness and mould, whereby the illness and costs associated with excess moisture and mould might keep low income households in draughty dwellings, which reduces the risk of moisture and mould.
If effectively designed, installed, maintained and used (perhaps rarely), purpose provided ventilation systems could potentially reduce indoor source air pollution exposure (R2).
Less airtight houses also allow outdoor pollutants to infiltrate, increasing morbidity and mortality from this source (R1).
If effectively designed, installed, maintained and used (perhaps rarely), these systems could potentially reduce outdoor source pollution if they include effective filtration (R3).
It was argued by some that households with lower income tend to live in less airtight houses, with therefore greater movement of indoor air pollution outside affording some balancing protection from air pollution morbidity and mortality (B1).
B3 humidity and fresh air: this loop describes how decreasing the air change rate increases indoor relative humidity and the risk of excess moisture and mould. It was argued that many households actively manage this risk by opening windows to increase ventilation (with an associated increase in energy used to optimise indoor temperature).