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Abstract. Ophthalmology typically records the highest levels of attendances for specialist outpatient 
treatments in the NHS with figures reaching 5.5 million visits for 2020-21. To catch up with a 
significant backlog of appointments due to COVID, pop-up eye clinics in shopping centres are being 
explored as an innovative way to increase capacity. Whilst design guidance for clinics exist, it tends 
to focus on the precedent of a hospital setting. This project used Internet of Things technologies to 
monitor patient flow on a per second basis through a clinic to understand from an end-to-end system 
perspective, opportunities for efficiency gains. In this paper we describe how the results of spatio-
temporal analysis of 4000 patients and data from environmental exposure risk models informed 
clinic design decisions. 

1. Introduction 

Ophthalmology is a branch of medicine that deals with diseases of the eye. It involves the 
surgical and medical management of eye disorders. In the UK, ophthalmology typically records 
the highest number of outpatient attendances of any NHS speciality with appointment numbers 
reaching 5.5 million visits for 2020-21 (NHS Digital, 2021). During the COVID pandemic 
patients missed routine check-ups and examinations creating a significant backlog of 
appointments. To expand capacity and increase patient flow through these services, Moorfields 
Eye Hospital tested pop-up eye clinics (Mills et al., 2022) in decentralised easy to access 
locations as an alternative to traditional appointments in a central London hospital.  

Glaucoma, macular degeneration, diabetic eye disease (i.e. medical retina) and cataract care at 
Moorfields consists of several standardised tests that each patient goes through when visiting 
an outpatient clinic. Measurements of visual acuity (chart reading) is carried out for all 
ophthalmology patients. Glaucoma is typically tested through a comprehensive eye exam that 
includes measuring the pressure in the eye, examining the optic nerve, and testing the visual 
field using equipment such as a Humphrey Field Analyser (HFA). Medical retina conditions 
are tested through an eye exam that includes examining the retina, macula, and optic nerve, 
using imaging devices such as optical coherence tomography (OCT). Cataract assessments 
include examining the lens, pupil, and cornea, as well as imaging tests such as OCT.  

Traditionally, there has been a bespoke approach to testing for each patient, assuming it would 
be quicker. In this clinic a standardised testing menu was developed to test if smoothing the 
flow led to a more efficient process, even though more tests might be carried out. This means 
that the patients, and the technician running the procedures, go through very similar activities 
that have the potential to be optimised to reduce patient journey time and increase appointment 
availability. 

Figure 1 shows an example flow of patients through a clinic based on 3 different pathways. The 
red lines show the flow of glaucoma patients, the green lines medical retina and the blue lines 
cataract. The same type of machine can be used on multiple pathways. It should be noted the 
site provided NHS service care, but a subset of patients consented for research level data 
collection, in the “Research” cubicles after attending reception and before departing. 
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Fig. 1. Patient flow through clinic (Phase 4) glaucoma (red), medical retina (green) and cataract (blue)  

This research extends existing space syntax studies (Sailer, 2021) which use a set of analytical 
tools to measure the spatial configuration of a given area and how it affects the movement of 
people. Driven by direct observation and ethnographic processes, space syntax is used to 
analyse the impact of design decisions on the flow of people, such as the placement of entrances 
and exits, the size and shape of pathways, and the presence of obstacles. The use of IoT 
technology in this research seeks to test automated methods for the tracking of 1000 people 
through a clinic versus direct observation of 10 patients. The hypothesis is that scaling 
observations 100x will generate novel insights regarding patient flow and provide quantitative 
evidence on the impact of different clinic layouts on visitor journey time. The second hypothesis 
is that the position and movement of people is a key factor in the spatio-temporal variation of 
air-borne hazards within real, complex spaces with the IoT approach providing the key data 
input into new models.  

2. Experimental Environment 

The clinic in a North London shopping centre retail unit provides glaucoma, medical retina and 
cataract care consisting of combinations of several standardised tests that each patient goes 
through when visiting an outpatient clinic. A key design feature of the pop-up clinic was 
reconfigurability, to allow testing of different layouts, in order to understand how they 
influenced patient throughput and enabled minimisation of infection risk throughout waves of 
COVID-19. The interior fit out used a novel, modular system of creating functional 
environments that could be changed over the space of a long weekend. This allowed changes 
in machine layout, numbers of machines and sequences of procedures. Figure 2 highlights 
privacy enabling “rooms” for private interactions (left), booths providing some isolation whilst 
allowing staff to see which machines are free (middle), and the dark booths (right) to provide a 
light-controlled environment for machines which require minimal background light. Four 
different layouts were tested in the pop-up clinic between October 2021 and February 2023. 

To understand the performance of the clinic environment, two primary methods of automated 
data capture were used to make observations. They included patient tracking through Ultra-
Wide Band (UWB) technology (Ubisense, 2022) and environmental measurements from air 
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samplers located at locations throughout the clinic to assess particulate loading and sizes, 
temperature, humidity and CO2 concentration over a working day. The purpose was to assess 
the spatial and temporal variation of air mixing and dilution within a complex space. A key 
ingredient in assessing air-borne hazards, particularly in relation to past experience of COVID-
19, is how air, potentially laden with pathogens (contained within droplet nuclei, generated by 
breathing or an aerosol generating procedure) is dispersed and diluted. These processes depend 
on (a) location and movement of people by acting as sources of heat (which greatly affects 
flows), humidity and air-borne pathogens, (b) the clinic environment through layout and 
equipment (as sources of heat), (c) exchange surfaces (the entrance, other floors, air-
conditioning units). In a real environment, all three elements are changing in time and the 
physical process of mixing, likewise, changes spatially and temporally. In this activity, we use 
fixed and mobile measurements of CO2 and temperature, and link them (a,b) and (c).  

 

Fig. 2. Photograph of clinic showing typical layout of machine booths.   

Seventeen Ubisense UWB sensors located around the ceiling of the clinic support the real time 
location of 100+ credit card sized tags allocated for tracking. An example UWB sensor can be 
seen in Figure 2. Each tag is worn by a patient participating in the research and tracks their 
movement throughout their visit to an accuracy of 15cm. The technology works by transmitting 
a signal over a wide range of frequencies, allowing for greater accuracy and precision in 
tracking and locating objects. The signal received by the sensors are then used to determine the 
location of the tag carried by the patient. Each of the UWB sensors had a wired connection to 
a timing server which aggregates all the readings and saved all timestamped coordinate readings 
to a database in an on-premises server. A Ubisense application running on the same server 
provides a web-based interface to real-time and historic data. 

A key requirement of automating the data capture of the patient flow was maintaining 
confidentiality of the research participant, a common challenge when using other technologies 
such as cameras or Bluetooth (Ziegeldorf et al., 2013). In addition, there was a requirement to 
provide information on patient journey as a vector through space which cannot be obtained 
through other traditional space occupancy systems which rely, for example, on passive infrared 
sensors (Azizi et al., 2020). To maintain patient confidentiality, the Ubisense system was setup 
so that each tag had a unique ID as a reference for the geolocation database. The Moorfields 
reception staff allocated the tag ID when the patient joined the research programme and the ID 
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was stored in the patient record. This process isolated the non-NHS research team from any 
personally identifiable information.  

CO2/humidity/temperature were measured using 8 probes (Testo Probe 138, www.testo.com) 
placed across the clinic. The aerosol load was assessed using a Fluke 985 Particle Counter, but 
the aerosol generating activities within Brent Cross dominated the measurements. Data was 
recorded at every 10s from the start and end of the clinic.  The air flow within the clinic was 
naturally ventilated and unfiltered; the aerosol loading was mostly dominated by aerosol 
generating activities within Brent Cross, with sub 2 micron aerosols being generated from a 
nearby road (A406).  

Data from these technical platforms were validated against ethnographic observations 
following an individual patient through a complete journey and qualitative feedback from 
clinicians, technicians, and the design team responsible for the interior layout of the clinic. 

3. Data Acquisition, Processing and Visualising Flow 

The Ubisense web application provides an interface to download raw patient traces as CSV 
files. Table 1 shows a sample of raw data containing information on patient reference, an x/y 
location based on the Ubisense coordinate system and the time span at that location. 

Table 1. Sample raw data from Ubisense. 

Patient Location from To 
G1638 3.738,6.596 15/03/2022, 11:15:51 15/03/2022, 11:16:13 
G1638 5.389,5.838 15/03/2022, 11:16:13 15/03/2022, 11:16:14 

The downloaded raw position data is processed in Python to remove outlier tags and to generate 
derived variables. Examples of outliers include tags that had been allocated but not used, 
observable through very short journey times, or tags that show data beyond 3 hours, which 
implies tags that were not checked back in or left overnight. The derived values include extra 
columns of data such as visit length, hour of day, am / pm, pathway etc. A full description of 
the data cleaning process is documented in the project GitHub repository (Djdunc, 2023). The 
result is an output CSV used to generate the analysis below. 

Basic statistics of patient flow through the process were plotted to show variations between 
both days of week and the 4 different layouts. This data provided the clinicians and technician 
with quantitative data on the performance of the different layouts in terms of total journey time. 
Since measurements were taken over several weeks the data also provided opportunity to 
observe “settling in” time to new operational layouts. Figure 3 shows an example box plot of 
total patient journey times across weekdays. 

In phases 1-3 both staff and patients carried tags however the Ubisense system only recorded 
patient data. In phase 4 of the research, staff data was also recorded to support the analysis of 
relationships between staff / patient proximity. In all cases, the allocation of staff tags was 
random with no record of staff member to staff tag being recorded. In total approximately 1000 
patients were recruited per phase which equated to roughly half of the patients volunteering to 
participate in the recording whilst the research was in progress. 
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Fig. 3. Example box plot of day of week 
difference in phase 3 experiment. 

 

 

Fig. 4. Spatio-temporal visualisation phase 3 
glaucoma green, retina yellow. 

Additional spatial flow visualisations (figure 4) were created to explore and identify patterns in 
movement around the clinic. Created in Processing (Processing, 2023) the data visualisation 
enabled a spatiotemporal analysis of either individual patient journeys or patterns from a group 
of patients (e.g. by different days of the week). 

Two factors that influence CO2 concentration are the location and density of people. The spatial 
distribution of CO2 sources from people (average over periods of time – from figure 4) was 
determined by mapping data from figure 4 on to an unstructured 2D mesh of the clinic with a 
finite gaussian source (of radius 0.2 m) added at each registered location. Figure 5 shows the 
normalised CO2 source distribution for the different patient class along with the same 
distribution for staff. The images show the relatively complex space and how the pathways for 
patients passing through different diagnostic channels. 

            

Fig. 5. Heat map showing the effective source of CO2 from patients and staff (phase 4) determined by 
adding a gaussian source to an unstructured mesh representation of the space. The white lines 

represent the vertical barriers within the space. The blue symbol shows the direction of camera used to 
take the photograph in figure 3. 
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4. Results 

Analysis of the spatial flow, statistical analysis of visit times and comparison with manually 
observed patient journey data demonstrated the capability of the UWB sensor to track patients 
around the clinic. Whilst the automated data capture does not provide the same level of 
individual detail (i.e. why a visit length might have been longer due to a problem with the 
machine or an elderly patient moving more slowly through the clinic) it captures 100x more 
examples of total journey length to support statistical analysis.  

Hypothesis 1 – patient visit time reduces as staff get familiar with new layouts. One concern 
with trying different layouts was that change would disrupt the technician’s workflow leading 
to longer visit times whilst they became familiar with the environment. A linear regression was 
used to model the relationship between the patient visit length and time.  

In phase 1 and phase 2, some reduction in patient visit length is observed (Fig. 6a slope of -0.36 
and Fig. 6b slope of -1.1 respectively) and in phase 3 an increase in time can be observed (Fig. 
6c slope of 0.14). During phase 4 no change in mean visit length is observed (fig. 6d slope of 
0.004). This suggests that adaptation to a new environment has no significant impact on the 
over journey time through the clinic. 

 

 

Fig. 6a P1 Visit Length over time 

 

Fig. 6b P2 Visit Length over time 

 

Fig. 6c P3 Visit Length over time 

 

Fig. 6d P4 Visit Length over time 

 

Hypothesis 2 – layout of the clinic influence patient visit lengths. Throughout the trial phase 
design meetings were held to review activity in the clinics. Phases 1 to 3 were perceived to be 
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incremental improvements, with phase 4 introducing greater complexity to the environment, 
through the introduction of face-to-face pre-operative cataract surgery assessments which 
probably eroded some previous gains in efficiency. The mean visit times were: 

P1 - 77 mins n=1028 
P2 - 69 mins n=187 
P3 - 68 mins n=1086 
P4 - 91 mins n=924  

Figure 7a-d illustrates the mean patient journey time, split by condition (Fig. 7a-c show 
glaucoma and medical retina, Fig. 7d shows cataract, glaucoma and medical retina), in phases 
1-4 (P1, P2, P3, P4). Each y axis is normalised across the four charts to highlight the larger 
spread of journey times for phase 4. This data supports qualitative feedback from staff in the 
clinic and highlights that layout and organisation of the clinic can have an impact on patient 
visit times. 

 

 

Fig. 7a P1 Visit Length by Condition 

 

Fig. 7b P2 Visit Length by Condition 

 

Fig. 7c P3 Visit Length by Condition 

 

Fig. 7d P4 Visit Length by Condition 

 

Hypothesis 3 – The CO2 concentration within the clinic - in the absence of heating and cooling 
- has the same trend as the number of people present. The CO2 concentration (in the absence 
of heating and cooling in the ground floor) in figure 8(d), shows the same variation as the 
average number of people in the space (figure 8(b)). The spatial distribution of CO2 (figure 9), 
shows a maximum near the stairs at 15.00. This occurs because the collective effect of people 
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leads to heating that drives an air flow pattern to the (closed) second floor, that is then driven 
down the stairs, to air sampler 5, by cooler air from second floor.  

 

Fig. 8: (a) Three-dimensional representation of the space showing position of air samplers. (b) The 
number of patients over time from 10:00 to 17:00 (averaged over a number of days) and grouped into 
clinical pathway (retinal, cataract, glaucoma). (c,d) Variation of temperature and CO2 concentration 

with time at the measurement points (indicated (a)).  

This latter point highlights two primary observations from this work: we were over optimistic 
about the assimilation of large volumes of IoT data - bringing together data from multiple 
technical systems is challenging, which is compounded by the difficulty in then representing 
that information in a format that can be interpreted to make design decisions; secondly, the 
challenge of multi criteria optimization - trying to isolate root causes in human-technical 
systems, for example, staffing levels, are hard to isolate in complex systems such as these. Even 
with these challenges, IoT data has enabled enhanced understanding of patient flow and has 
been used as a positive input into the design of the clinic environment and continues to be used 
to develop best practice. 

 

Fig. 9. Spatial distribution of CO2 (corresponding to figure 8) at times 10:00, 15:00 and 17:00. The 
time of 15:00 corresponded to the maximum CO2 concentration in the space (1050ppm). 

5. Conclusions 
The aim of deploying IoT technology in the clinic environment was to understand to what 
degree data driven insights could inform decision making. The project has highlighted areas 
where continuous real-time monitoring adds value above existing point in time observational 
analysis. Seeing longitudinal trends provided the evidence required to support design decisions. 
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For example, visit length does not significantly reduce over time as staff get familiar with the 
layout.  
A secondary benefit of the data captured was the ability to visualise the flow of patients in 
different ways. Whilst the statistical representations helped inform macro level decision 
making, the spatiotemporal visualisations of flow enabled conversations with the technicians 
in the clinic to understand the patterns of behaviour of space usage. In the latter case 
observations were sometimes counter intuitive to how the space planners thought the space 
would be used. 
The real-time monitoring of the location of people can be combined with static measurements 
of temperature and CO2 to develop new insight into the relationship between clinic layout and 
air quality. The air quality depends on the number of people present in a room, how they are 
distributed within that space and the mode of air mixing. The clinical space analysed was 
naturally ventilated with air conditioning units providing heat and cooling. Certain aspects of 
the layout were found to enhance air-quality, including wide pathways extending along the 
length of the space. The air quality was generally very good (typically less than 250 ppm above 
the Brent Cross air). The highest CO2 concentrations (>1000 ppm), located at the bottom of the 
stairs, was not correlated to a high local concentration of people but due to an anomalous air 
flow path: hot air rose to the second floor, where it mixed and was cooled by air-conditioning 
units, and then flowed downstairs. Our next steps are to integrate the new spatiotemporal 
information of patient-staff locations with a 3D computational description of air flow 
movements to guide an airborne risk analysis. 
Whilst the majority of data analysed to date has been anonymous, future integration with patient 
data would support a deeper understanding of the flows through segmentation of the data by 
demographics such as age groups. At present these datasets are separate but discussions are 
underway to merge anonymised demographic data to support further analysis.   
At a broader level, this research has the goal of developing our understanding of factors that 
influence the flow of patients through clinics to the extent that we can model how a new clinic 
might perform. Such simulation tools will enable the proactive design of clinics that are fit for 
purpose and adaptable to the constraints of their physical location. 
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