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Abstract. Towards a more detailed understanding of how roadway workers’ instinctive reactions 

(e.g., moving their entire body, turning their head) to traffic contribute to fatal work zone crashes, 

there is a need for accurate models of workers’ behaviour in these dangerous scenarios. While related 

studies address similar challenges in vertical building construction sites, this study proposes a deep 

learning model for worker behaviour in horizontal roadway work zones, building on a previously 

developed wearable sensor and virtual reality (VR) platform designed to capture safety related 

behavioural data (e.g., head position and orientation, field of view) on workers exposed to hazardous 

traffic vehicles as they experience immersive simulations of real-world roadway work zones. Using 

gated recurrent units (GRUs) trained with behavioural data collected from the platform, the deep 

learning model’s accuracy (i.e., average displacement error) in predicting a worker’s future position 

trajectory will be evaluated.  

1. Introduction 

Roadway work zones in the United States are now experiencing more than 700 fatal crashes 

resulting in over 800 deaths annually, with roadway construction workers accounting for around 

one in seven of these fatalities (American Road & Transportation Builders Association 

(ARTBA), 2023). While the majority of past research in transportation and construction safety 

have focused on characteristics of vehicle motorists, only a few studies have focused on the 

attributes of the roadway work zones, such as work zone layout and construction activities 

(Ergan et al., 2020). The most recent studies have only begun to investigate workers’ instinctive 

physical reactions to dangerous vehicles, with a significant gap remaining in understanding how 

roadway workers’ individual actions and behaviour contributes to accidents in work zone 

crashes (Thapa & Mishra, 2021). Traffic safety research and industry efforts to improve work 

zone safety have led to standards and guidelines on workers’ safety behaviour, including use of 

personal protection equipment (PPE), layout of traffic control devices (e.g., cones, barriers), 

and attention to hazards during construction activities (Ergan et al., 2020; Thapa & Mishra, 

2021). While these guidelines offer workers a clear checklist for preparing roadway work zones, 

they remain vague on what workers should specifically do during construction work to maintain 

awareness of surrounding traffic and construction hazards. This awareness of and response to 

traffic can become a particular concern in short-term work zones where fewer traffic control 

devices are used.  

The lack of actionable worker safety behavioural guidelines is partly due to limited accident 

data on how specific roadway workers’ safety behaviour during construction (e.g., turning their 

head towards traffic) contributes to rates of work zone fatalities and injuries. To better 

understand construction workers’ safety behaviour, research has proposed approaches for real-

world data collection that deploy real-time location systems for workers and equipment, a costly 

and potentially dangerous endeavour for workers involved (Luo et al., 2016). Data collected 

from such systems could be used to build accurate and detailed (i.e., high fidelity) statistical 

models that predict how construction workers move around the work zone (i.e., their walking 

trajectory) as they work and in response to potential hazards like moving construction 

equipment or traffic vehicles. Yet in their attempts to address practical implementation 
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challenges, the real-world sensor approaches face constraints in the categories of data they can 

collect on workers, which can further restrict the classes and accuracy of models for predicting 

workers’ safety behaviour. Recent virtual reality (VR) based studies have started to demonstrate 

that research can collect a variety of data regarding a roadway worker’s behaviour, enabling a 

wider exploration and development of more data-driven statistical models that relate workers’ 

specific actions to their consequent safety in the work zone (Gao et al., 2022; N. Kim et al., 

2021). A key question remains in whether or not models of worker behaviour can improve 

prediction accuracy with the inclusion of data tracking a worker’s context, such as their relative 

distance to other workers and construction equipment (Cai et al., 2020).  

This study evaluates different deep learning models for predicting a time series of a worker’s 

behaviour in short-term roadway work zones, building on a previously developed wearable 

sensor and virtual reality (VR) platform designed to capture safety related behavioural and 

context data (e.g., head position, head orientation, field of view) on workers exposed to 

hazardous traffic vehicles as they experience immersive simulations of real-world roadway 

work zones. Recurrent neural networks (RNN), using different cells such as long short-term 

memory (LSTM) and gated recurrent units (GRU), were trained with behavioural data collected 

from the platform to predict a worker’s future position trajectory, accounting for different 

categories of information such as the worker’s previous positions, their head orientation, and 

other relevant context with respect to traffic. All RNN models were evaluated in terms of their 

prediction accuracy (i.e., average displacement error) to assess the performance of different 

network architectures and the usefulness of additional context input data. Overall, this paper 

provides a case study of how a high-fidelity roadway worker behaviour model can be developed 

using VR data collection and deep learning networks. 

2. Related Work 

2.1 VR Studies on Roadway Worker Safety Behaviour 

While VR is being widely experimented with as a construction safety training tool, only a few 

recent studies have explored using VR for analyzing workers’ unsafe behaviour in construction 

sites (Ergan et al., 2020; Gao et al., 2022; N. Kim et al., 2021). Utilizing a VR headset as a 

wearable sensor that tracks a person’s head location, orientation, and visual attention (i.e., eye 

tracking), it is possible for researchers to analyze a workers’ second-by-second behaviour and 

instinctive reactions to safety hazards. While there are numerous studies using VR to model 

vertical building construction sites, roadway work zones have only become a focus of VR-based 

studies in recent years. In a 2021 study, Kim, et. al. specifically used VR to simulate roadway 

work zones and tracked how far away vehicles were to an individual worker at the moment that 

worker raised their head to check if the vehicle was too close (i.e., checking distance). Using 

multi-level models estimating a worker’s checking distance over time, this study examined the 

rate at which roadway workers became less vigilant and more habituated to risks of vehicle 

crashes. Overall, past VR studies build statistical and machine learning models to analyze trends 

within workers’ safety behaviour but do not utilize the models to predict future worker 

behaviour. In contrast, this paper utilizes a VR environment to collect a time series of data on 

roadway worker’s safety behaviour and context to develop a prediction model of how roadway 

workers will move (i.e., trajectory) while they work and in response to surrounding traffic.  
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2.2 Human Trajectory Prediction with Deep Learning Methods 

Human trajectory prediction involves estimating how a person moves in a specified time frame, 

given that person’s prior movement and other potentially relevant past information. Previous 

research in both vertical construction worker and on-road pedestrian trajectory prediction have 

evaluated a variety of different deep learning model architectures (Deo & Trivedi, 2017; D. 

Kim et al., 2019; Tang et al., 2019). Due to the sequence-to-sequence nature of trajectory 

problems, recurrent neural networks (RNNs) have been considered, given their well-established 

performance in natural language and machine translation applications (Cho et al., 2014; Sak et 

al., 2014). Long short-term memory (LSTM) and gated recurrent unit (GRU) cells are two 

commonly used units in recurrent networks and can be simply used to generate predictions 

recursively (Figure 1, top). The potential drawback of this recursive approach is that any error 

in the first predicted position can lead to greater errors in subsequent position predictions (i.e., 

error accumulation). A well-known improvement to this approach is the encoder-decoder RNN 

architecture, which tries to reduce those errors by using one recurrent network (i.e., encoder) to 

interpret the entire input sequence before using a separate recurrent network (i.e., decoder) to 

predict an output sequence (Cho et al., 2014). The encoder’s final hidden state, which can better 

capture the internal structure of input data, is passed to the decoder network to make more 

accurate predictions (Figure 1, bottom).  

In the construction worker domain, a 2020 study by Cai, et. al. evaluated LSTM units in both 

recursive and encoder-decoder architectures to predict construction workers’ trajectory 

accounting for their prior positions and other context information, such as the worker’s social 

group and general head direction (e.g., north, south, east, west). While encoder-decoder LSTM 

networks achieved higher accuracy than recursive prediction architectures, the accuracy of 

models using extra context input data were, on average, comparable to those which only 

accounted for a workers’ past positions. A recent virtual reality domain paper focused more on 

predicting people’s movement while using VR systems found that GRU-based encoder-decoder 

network architectures can outperform LSTM-based ones in human trajectory prediction (Lemic 

et al., 2022). Motivated by these findings, this paper explores a novel application of both LSTM 

and GRU-based models to predict the trajectory of roadway workers, given their prior positions 

and safety context with respect to traffic. 

 

 
Figure 1:   Different recurrent network approaches for predicting the same length of output sequence 

(i.e., worker’s future trajectory). 



4 

 

3. Methodology 

The approach for this study was to collect time series data on roadway worker behaviour on an 

integrated VR-traffic simulation platform and then use that collected train RNNs for perform 

worker trajectory prediction (i.e., offline prediction). Details on data collection, pre-processing 

that data for deep learning models, RNN architectures considered, and training model 

hyperparameters are discussed in the following sections. 

3.1 VR Data Collection Platform 

Prior work by the research team developed an integrated VR and traffic simulation platform, 

where vehicle movements in a Unity game engine virtual environment are synchronized with 

calibrated microsimulations of traffic flow in Simulation of Urban Mobility (SUMO) software. 

A single roadway worker wearing a VR headset (HTC Vive Pro) can perform simulated 

versions of roadway construction work in a virtual model of a work zone while traffic vehicles 

realistically move around it. The realism of these simulations is enhanced when virtual model 

dimensions match 3D point cloud scans of real-world roadways and work zones. As shown in 

Figure 2, this platform can enable researchers to collect detailed data on workers’ behaviour in 

realistic urban roadway environments and traffic conditions while safely remaining in a 

controlled lab setting. Details of the VR-traffic simulation platform’s full capabilities can be 

found in previous publications (Ergan et al., 2022). All VR user studies were performed with 

an HTC Vive Pro VR system running simulations in Unity 2019 and SteamVR on an Alienware 

m17 laptop with Intel Core i7-9750H CPU and NVIDIA GeForce RTX 2080 MaxQ GPU. 

Subsequent sections will outline the specific implementation of the roadway work zone virtual 

environment and the types of worker behaviour data collected from VR user studies. 

3.2 User Studies on Data Collection Platform  

Roadway worker behaviour data was collected for this study on people performing a 

PolyVinyliDene Fluoride (PVDF) weigh-in-motion (WIM) sensor installation on a highway in 

a virtual 3D replica of an urban highway near New York University’s Tandon campus in 

Brooklyn, New York. The scenario was especially of interest to the research team since it 

involved shorter term duration roadwork on a highway, where relatively fewer traffic control 

devices serve as conventional safety protection for workers (Ergan et al., 2020). Screenshots of 

the virtual roadway work zone and roadwork activities are shown in Figure 3, including pushing 

a road pavement saw-cutting machine, inserting the actual WIM sensor cable, and distributing 

grout to embed the sensor into the pavement. New York University’s IRB approved human  

 
Figure 2:   VR-traffic simulation platform for collecting data on roadway workers’ safety behaviour 

for predicting their walking trajectory 
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Figure 3:   Virtual model overview (left) and example user interactive tasks in VR (right) for short-

term highway work zone for installing PVDF sensor. 

subject experiments on the integrated VR-traffic platform (IRB-FY2020-3946). Twenty 

participants (n = 20) were recruited for VR user studies involving this scenario. Participant 

demographics are discussed in the Results section. Once participants were given a tutorial of 

how to perform the sensor installation tasks in the VR environment, time series data on the 

roadway worker’s safety behaviour (e.g., maintaining distance from vehicles, visual attention 

to vehicles) was collected in one trial for each participant while night-time highway traffic 

passed by the work zone. The categories of data collected on each participant’s safety behaviour 

are illustrated in Figure 2 and explained in detail in the subsequent section. 

3.3 Categories of Data Collected in VR User Studies 

All data was collected directly from the Unity game engine with SteamVR plugin, which 

essentially remaps a VR headset’s physical position and orientation to a virtual camera’s 

position and orientation in the virtual environment. Since VR simulations of the work zone did 

not use any re-directed walking or teleportation within the virtual environment, all of the 

participant’s physical movements remained within the 2.29 m (7.5 ft) by 2.08 m (6.83 ft) lab 

space. Since a unit length in VR model units is equivalent to 1 meter (3.28 ft), all 3D locations 

of the virtual camera in Unity were treated as capturing the worker’s real 3D head position. 

Additional data was collected to serve as extra contextual information for worker behaviour 

models to make trajectory predictions. This included the participant’s head orientation, which 

was collected during VR user studies directly from the Unity virtual camera’s quaternion 

rotations, a four-dimensional complex number orientation convention. Context data also 

included the virtual distance between the worker and nearest vehicle, given that the worker’s 

head position and the position of all traffic vehicles are known within the Unity VR model. 

Using raycasting over virtual camera’s entire field of view, the number of vehicles in worker’s 

field of view could also be counted by tracking the number of unique traffic vehicles hit by the 

virtual camera rays. This data combined with the minimum vehicle distance and head 

orientation results in six extra dimensions for contextual information regarding a roadway 

worker’s safety. All numerical data was stored into a time series at every VR display frame 

update, at about 30 Hz.   

3.4 Data Pre-processing 

One user trial’s data had to be dropped due to a momentary loss of headset tracking by the VR 

system. Data collected from the remaining nineteen (n=19) user study trials was then pre-

processed for recurrent network model training and evaluation. All time-series data collected 

from VR user studies (worker’s head position, orientation, minimum vehicle distance, number 

of vehicles seen) were typically recorded at 30 Hz but actual sampling rate varied depending  



6 

 

on the VR headset’s display framerate and varying number of computations for counting 

vehicles in the user’s field of view. All recorded raw experiment data was then interpolated at 

a uniform frequency of 10 Hz (i.e., data recorded every 0.1 second), in order for the machine 

learning training data to resemble a consistent data stream while requiring a shorter training 

time. After interpolation, the data values in each dimension were normalized between 0 and 1 

based on the minimum and maximum value in each column (i.e., column-wise re-scale). The 

overall time series dataset was then subdivided into pairs of input and target (i.e., ground truth) 

vector sequences for recurrent network model training and evaluation. Based on previous 

trajectory prediction studies showing significantly increasing error with longer future prediction 

time frames, it was decided that the RNN models should try to predict the next one (1) second 

of a worker’s position/trajectory based on the previous three (3) seconds of that worker’s 

observed trajectory (Deo & Trivedi, 2017; D. Kim et al., 2019). In other words, at a 10Hz data 

sampling rate, a sequence of 30 vectors would serve as RNN model inputs, and model 

predictions would be trained and evaluated on a sequence of 10 target vectors. Pre-processing 

the dataset resulted in 46,690 pairs of 3 second observed input and 1 second target data were 

produced for RNN model training, validation, and testing. Data was then split into respective 

80-10-10 percent training, validation, and test subsets based on the VR experiment trial that the 

input-target pair belonged to. This means that among the 19 trials of recorded VR data, 17 trials’ 

data was used for training, 1 trial was used for validation, and 1 trial’s data was used for testing. 

After this splitting approach, actual numbers of input-target pairs for training, validation, and 

testing are n = 42938, 2061, and 1691, respectively. 

3.5 Recurrent Network Model Implementations 

This study evaluates three different RNN architectures using either LSTM or GRU cells: 1) a 

recursive prediction network that considers only a worker’s previous positions, 2) an encoder-

decoder network that considers only a worker’s previous positions, and 3) an encoder-decoder 

network that considers worker’s previous positions and extra contextual information. All model 

input vectors have three (3) dimensions for previous positions. The encoder-decoder model 

with extra context also uses head orientation (4 dimensions), the minimum distance between 

worker and nearest vehicle (1), and the number of vehicles in the worker’s field of view (1) as 

extra context information included in their input sequence, giving their input vectors a total of 

nine (9) dimensions. All models considered in this study will only predict a future trajectory of 

the worker’s head position, meaning all target and prediction output vectors’ have three 

dimensions (3). Hyperparameter tuning the RNN models settled on applying the same 

hyperparameters to all network LSTM/GRU cell modules: a hidden size of 20, 4 stacked 

LSTM/GRU layers, and a dropout rate of 0.5.  

3.6 Recurrent Network Model Training and Evaluation 

All six RNN models (i.e., LSTM and GRU cell implementations of the three network 

architectures) are trained on the mean square error (MSE) loss function, which measures the 

average squared difference between, 𝒚̂𝒊
′
, each of the models’ predicted normalized worker 

positions (i.e., every position in every predicted trajectory), and 𝒚𝒊
′, the corresponding target 

normalized worker positions (i.e., every position in every ground truth trajectory) from the pre-

processed VR user trial data (Equation 1).  

𝑀𝑆𝐸 =
∑ (𝒚̂𝒊

′ − 𝒚𝒊
′)

2𝑁
𝑖

𝑁
                                    (1) 
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Towards evaluating these prediction models with physically relatable metrics for roadway 

worker safety, the average displacement error (ADE) is also measured for each predicted 

trajectory. That is, the actual Euclidean distance (i.e., not normalized) between predicted 

positions (𝒚̂𝑗) and ground truth positions (𝒚𝑗) averaged over each 1 second timeframe is 

calculated as a measure of a model prediction’s accuracy (Equation 2). 

𝐴𝐷𝐸 =
∑ √(𝒚̂𝑗 − 𝒚𝑗)

2𝑛𝑓𝑢𝑡𝑢𝑟𝑒

𝑗

𝑛𝑓𝑢𝑡𝑢𝑟𝑒
                                    (2) 

In the above equation, 𝑛𝑓𝑢𝑡𝑢𝑟𝑒 = 10 since the output data encompasses 1 second sampled at a 

rate of 10Hz. This metric can be expressed in units of physical distance (e.g., meters) to get a 

real-world sense of how accurate the models are in predicting worker’s position in the future, 

since 1 virtual unit of length in Unity corresponds to 1 meter in the physical world. All RNN 

models were trained over 1000 epochs with the same training loop parameters: a batch size of 

32, learning rate of 0.00005, and Adam optimizer with weight decay regularization. Though all 

models were trained and validated in the same number of epochs, only the learned model 

parameters that achieved the lowest validation loss (i.e., minimum validation MSE over all 

epochs) were used for each model’s evaluation on the test dataset. Models were implemented 

in PyTorch version 1.13.1 and trained on New York University’s High Performance Computing 

Greene cluster using two Intel Xeon Platinum 8268 CPU cores, 8 GB memory, and an NVIDIA 

RTX 8000 GPU. Training time for each model ranged between 3.72 and 6.7 hours. 

4. Results 

The final nineteen (n=19) participants’ VR user study trial data consisted of affiliated NYU 

students, ages between 22 and 28. Only a select fraction (n = 4, 21%) of participants had 

previous construction and roadwork experience, ranging between 2 weeks to 2 years. 

Participants took between 2.5 to 10 minutes to complete the entire procedure within each virtual 

simulation data collection trial. While this data collection sample is not representative of the 

roadway construct workforce, an initial analysis comparing the construction-experienced 

participants’ VR positions during each trial to that of participants without construction 

experience revealed relatively similar movement patterns, especially since all participants had 

to perform the same roadwork tasks. All participants felt immersed in the realistic VR traffic 

environment such that their behaviour working safely around traffic is still worth using for 

training and evaluating human trajectory prediction models.  

To evaluate the accuracy of these different RNN models’ predictions, the ADE of every model’s 

1 second trajectory predictions were measured against the corresponding 1 second ground truth 

trajectory in the test dataset. Figure 4 shows box plot distributions of each model’s one second 

trajectory prediction ADE. The encoder-decoder networks that used additional worker context 

data in their input data achieved relatively similar spreads of ADE to the equivalent networks 

that only used a worker’s past position data. Table 1 shows the minimum, maximum and 

average ADE of each model’s one second trajectory predictions. Both LSTM and GRU 

encoder-decoder networks respectively achieved 55% and 23% lower ADE compared to their 

recursive counterparts. While the LSTM encoder-decoder network achieved the lowest ADE 

over all predictions by all models at 0.0394 m (0.129 ft), the GRU encoder-decoder network 

achieved the lowest average ADE of 0.1885 m (0.618 ft). In particular, the GRU encoder-

decoder network with context input data reduced its average ADE by 9.4% compared to the 

same architecture with only position data inputs, suggesting that contextual information can 

improve a GRU model’s ability to predict workers’ future safety behaviour. 



8 

 

 
Figure 4:   Distribution of average displacement errors of each one second future trajectory prediction 

by the different models on the test dataset. 

Trajectory predictions are visualized side by side for the same input-target trajectory pairs (i.e., 

same timeframe in the test data experiment). Figures 5 (a) and (b) show “birds eye views” of 

the worker’s head position in the virtual work zone, where each plot has a blue line indicating 

the three seconds of observed worker trajectory (i.e., model input), a green line indicating how 

the worker actual moved in the one second after (i.e., ground truth), and different red lines 

showing different GRU network models’ trajectory predictions. Figure 5 (a) shows one of the 

best predictions (i.e., among the lowest ADE) made by the GRU encoder-decoder network that 

used context data in its input. While encoder-decoder networks appear to anticipate a change in 

a worker’s walking direction (i.e., worker turns around to walk in a different way), recursive 

prediction networks predictions are generally straight. The right-most plot of Figure 5 (b) shows 

the trajectory prediction with the lowest ADE by the GRU encoder-decoder network that used 

context data in its input. While the GRU encoder-decoder-context data network is able to 

achieve this low ADE because a few select predicted positions are very close to the ground 

truth positions, visual inspection reveals that it fails to capture the relatively straight path (i.e., 

no curvature) of the worker’s actual trajectory that other GRU networks are able to match. 

Further refinements to the GRU models’ training based on this curvature could improve their 

accuracy. 

Table 1:   Average displacement error of predicted 1s worker trajectory in test dataset 

Network 

Cell 

Network Type Input Min ADE [m] Max ADE [m] Average ADE 

[m] 

LSTM Recursive position only 0.1040 1.5685 0.4595 

LSTM Encoder Decoder position only 0.0394 0.9071 0.2035 

LSTM Encoder Decoder position + context 0.0504 0.8675 0.2070 

GRU Recursive position only 0.0401 1.2384 0.2709 

GRU Encoder Decoder position only 0.0431 0.9084 0.2079 

GRU Encoder Decoder position + context 0.0437 0.8882 0.1885 
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5. Discussion 

This study’s findings contribute toward models that can anticipate a roadway worker’s safety 

behaviour by utilizing wearable sensor data. Results indicate that extra context data can improve 

the accuracy of a GRU encoder-decoder network’s ability to predict a workers’ future 

movement. A qualitative review of screen capture videos of what participants saw in VR and 

how they moved their heads during the 4 second timeframes captured in Figure 5 (a) generally 

revealed that accounting for a worker’s head orientation was likely the most beneficial towards 

more accurate encoder-decoder network predictions. ADE values in Table 1 also indicate that 

encoder-decoder recurrent architectures are more accurate than their recursive prediction 

counter parts, and GRU-based networks occasionally perform better than LSTM-based 

networks. Figure 5 (b) illustrates how the ADE may not be the best metric of a trajectory 

prediction model’s accuracy, since a model can predict a few points close to the ground truth 

trajectory while not capturing that trajectory’s general curvature. Alternatives to the ADE 

metric that can account for this curvature warrant further investigation. However, in 

demonstrating accurate predictions of a worker’s future positional trajectory, this study’s 

findings are a step towards a more comprehensive high-fidelity model of roadway worker safety 

behaviour in relation to traffic. 

6. Conclusion 

This paper compares the accuracy of different RNN models for predicting a roadway worker’s 

future walking trajectory, given data collected on human behaviour during realistic VR 

simulations of a highway work zone. Most importantly, the inclusion of extra contextual 

information regarding a roadway worker’s safety (e.g., their head orientation, vehicles in their 

field of view, relative distance to vehicles) was found to potentially contribute to better accuracy 

in a GRU encoder-decoder models’ trajectory predictions, suggesting that sensors in real-world 

work zones capturing similar context data can contribute to higher fidelity models of roadway 

workers’ safety behaviour. Results also indicate that the GRU encoder-decoder network 

architecture can outperform LSTM-equivalents and simpler RNN architectures. Overall, the 

approaches explored in this study for using VR-traffic simulation platforms to collect data for 

training workers’ trajectory models should lead to a better understanding of roadway workers’ 

safety behaviour and ways to improve it. 

  
Figure 5:   Birds-eye view (Unity X-Z coordinates) of different networks’ trajectory predictions for the 

same 3 second observed worker trajectories in (a) and (b). 
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