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Abstract. Due to its outstanding fresh state performance, the self-compacting concrete (SCC) has 

been used in many applications such as sections with complex reinforcement and high-rise shear 

walls. To enhance mechanical properties and durability, steel fibres are introduced in SCC mixes. The 

fibre volume fraction and its geometrical parameters have been proven to have a significant impact on 

the elastic modulus, which is an important parameter for structural design. This study aims to 

implement machine learning techniques for predicting the elastic modulus of steel fibre-reinforced 

self-compacting concrete (SFRSCC). For this purpose, different machine learning models were 

developed. The performance of all models developed for predicting elastic modulus was evaluated and 

compared. The hybrid model demonstrated remarkable potential in predicting the elastic modulus of 

SFRSCC. 
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1. Introduction  

Self-compacting concrete (SCC) was first proposed by Okamura and has gained wide acceptance 

in the construction industry (Okamura & Ozawa, 1996). SCC is characterised by its outstanding 

flowability and filling ability without any external vibrations. SCC can also achieve the desired 

level of viscosity without segregation and bleeding. However, SCC has poor resistance to 

cracking and shrinkage (Ahari et al., 2015). To address this issue, the incorporation of steel 

fibres, known for their superior bending and tensile toughness, can effectively enhance the 

mechanical properties of SCC. Consequently, it is crucial to determine the mechanical properties 

of steel fibre-reinforced self-compacting concrete (SFRSCC) in comparison to conventional SCC 

in order to satisfy concrete design requirements. 

The elastic modulus is a crucial parameter for concrete analysis and structural design. 

Recommended values for the elastic modulus of SCC are provided in relevant standards and 

design guidelines (ACI Committee 318, 2007; NZS 3101, 2006; CSA, 2004). Furthermore, 

various design expressions describing the elastic modulus of SCC predominantly rely on 

compressive strength (Leemann & Hoffmann, 2005; Felekoǧlu et al., 2007). In the research 

reported in (Khaliq & Kodur, 2011), SCC mixes were reinforced using three distinct fibre types. 

Mechanical test results demonstrated that the incorporation of steel fibres resulted in increased 

tensile strength and elastic modulus at elevated temperatures. However, in contrary it was also 

reported that SFRSCC had yielded a lower elastic modulus compared to normal concrete with 

the same compressive strength. This observation can be attributed to the significant influence of 

aggregate content and steel fibre properties on SFRSCC. 
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The elastic modulus of SFRSCC is influenced by numerous parameters, including not only the 

composition of SCC and testing conditions but also the shape, aspect ratio, and volume fraction 

of steel fibres. Consequently, it is difficult to predict the elastic modulus of SFRSCC by utilizing 

conventional statistical and modelling analysis. In this study, machine learning techniques were 

proposed for the first time to predict the elastic modulus of SFRSCC while accounting for 

complex interdependent factors. The workflow of this study is summarized in Figure 1. 

 

Figure 1: Flowchart of machine learning based prediction on elastic modulus of SFRSCC 

2. Datasets and Evaluation Criteria  

A comprehensive dataset is essential for training and validating machine learning models. In this 

study, datasets were compiled from the literature, encompassing experimental and simulated 

results from 19 published articles (Cunha et al., 2008; Pereira et al., 2008; Corinaldesi & 

Moriconi, 2011; Gencel et al., 2011; Aslani & Nejadi, 2013; AL-Ameeri, 2013; Frazão et al., 

2015; Madandoust et al., 2015; Yehia et al., 2016; Rana T. Abdulkareem et al., 2016; da Silva et 

al., 2017; Ding et al., 2018; de Alencar Monteiro et al., 2018; Ghasemi et al., 2018; Mahmod et 

al., 2018; Ghasemi et al., 2019; Vijaya Kumar et al., 2020; Ouedraogo et al., 2021; Li et al., 

2021). The components of SFRSCC and characteristics of main variables are selected as input 

variables, including cement to binder ratio (C/B), water to binder ratio (W/B), fine aggregate to 

coarse aggregate ratio ( FA/CA), maximum size of coarse aggregate (AS), dosage of 

superplasticizers (SP), volume fraction of steel fibres (VFS), aspect ratio of steel fibres (ARS), 

tensile strength of steel fibres (TSS), curing age (Age), and compressive strength (Fcu).  The sole 

output of models is the elastic modulus (EM) of SFRSCC. Moreover, 80% and 20% of the 

datasets were randomly selected as the training and testing sets, respectively. The statistical 

description of the dataset is presented in Table 1, while the distribution of all variables is shown 

in Figure 2. The dataset for each variable demonstrates a normal distribution pattern. 

Additionally, it can be observed that the compressive strength of the mixes has a strong positive 

impact on the elastic modulus, which aligns well with most findings reported in the literature. 

The performance of developed models on training and testing datasets was assessed using three 

metrics, which are correlation coefficient ( ), root mean square error (RMSE), and mean 

absolute error (MAE). It should be noticed that  is dimensionless, while the unit of RMSE and 

MAE is GPa, same as that of elastic modulus. 

Table 1: Descriptive analysis of all variables 

Variable Symbol Unit Mean Minimum Maximum 
Standard 

Deviation 



Cement to binder ratio C/B - 0.69  0.40  1.00  0.13  

Water to binder ratio W/B - 0.34  0.13  0.52  0.08  

Fine to coarse aggregate ratio FA/CA - 1.30  0.79  2.57  0.32  

Maximum size of coarse aggregate AS mm 13.77  9.50  20.00  4.08  

Dosage of superplasticizers SP % 1.20  0.44  6.00  0.90  

Volume fraction of steel fibres VFS % 0.65  0.10  2.00  0.37  

Aspect ratio of steel fibres ARS - 59.51  28.50  80.00  14.45  

Tensile strength of steel fibres TSS MPa 1209.21  450.00  2800.00  313.43  

Curing age Age Day 30.57  3.00  91.00  18.38  

Compressive strength Fcu MPa 43.52  18.50  80.90  16.88  

Elastic modulus EM GPa 31.68  18.08  49.50  6.01  

 

Figure 2: The relationship and distribution of all variables 



3. Results and Discussion 

In this section, machine learning algorithms are trained and tested using the assembled datasets. 

Support Vector Machine (SVM), Random Forest (RF), and the hybrid model are developed 

employing Python and relevant software libraries. The predictive performance of each model is 

evaluated and compared. 

3.1 Development on Single Models 

The Support Vector Machine (SVM) is developed based on statistical learning theory. The 

learning algorithm is configured using the geometric distance, taking into account the Vapnik-

Chervonenkis dimension theory and the principle of structural risk minimization (Hsu et al., 

2003). Due to its unique advantages in addressing small samples, high-dimensional data, and 

nonlinear problems, researchers have applied the SVM model forecasting to solve engineering 

challenges. To prevent overfitting and to enhance the reliability of models, 10-fold cross-

validation was conducted prior to model training. Nine folds were selected as training datasets, 

while the remaining fold was used as the testing set. This process was repeated ten times, 

ensuring that each fold was selected at least once for testing. The mean values of metrics were 

then calculated for evaluating the developed models. 

To circumvent issues arising from different units and scales of variables, all data were rescaled to 

a range between 0 to 1. To examine the predictive performance of different kernel function, four 

functions consisting of liner, polynomial, RBF and sigmoid were selected and compared. As 

given in Table 2, the RBF function yielded the best results in the initial SVM model, with the 

highest  of 0.81 and lowest error values. Subsequently, the grid search was employed to 

determine the optimal combination of parameters C and Gamma, which represent the tolerance 

of error and mapped dimensions, respectively (Sánchez, 2003). The contour map of parameter 

pairs is shown in Figure 3, where the scores are represented by negative MAE values. It is 

evident that the maximum score is obtained when C and Gamma are 32 and 0.5 respectively.  

Table 2: Performance of initial SVM models with different kernel functions 

Kernel function 
Statistical parameters 

 

RMSE MAE 

Linear SVR 0.7221 3.0000 2.6140 

Poly SVR 0.7414 2.8936 2.2785 

RBF SVR 0.8108 2.4749 2.0342 

Sigmoid SVR -26.2330 29.6955 24.5170 

 



 

Figure 3: Grid search on parameter combinations of the SVR model 

Random forest (RF) is a logic-based machine learning method that utilizes expressions and 

logical operations in a top-down approach. It achieves a comparable error rate to other methods 

for most learning tasks and exhibits a reduced tendency to overfit (Farooq et al., 2020). Notably, 

normalization of the datasets is not required for this method because it relies on hierarchical 

structures and branching logic rather than distance or gradient-based calculations, rendering it 

insensitive to the scale of input features. Several hyperparameters were considered during the 

tuning process, including maximum depth, minimum sample leaves, and minimum impurity 

decrease, among others. It was observed that the predictive performance enhancement, due to the 

tuning process, resulted in an increase of  from 0.8619 to 0.9073 for the testing dataset. 

Following the grid search and hyperparameter tuning, the developed SVM and RF models were 

employed to predict the elastic modulus of SFRSCC, as displayed in Figures 4 and 5. The minor 

discrepancies between the predicted and actual EM values indicate high prediction accuracy of 

proposed models for both training and testing datasets. The correlation coefficients for the testing 

sets of SVM and RF models are 0.8505 and 0.9073, respectively.  

10 20 30 40 50 60 70

−10

−5

0

5

10

15

20

25

30

35

40

45

50

55

E
la

st
ic

 m
o

d
u

lu
s 

(G
P

a
)

Sample number

 Actual   Predict

(a) training set (b) testing set

 Error

2 4 6 8 10 12 14 16 18

−10

−5

0

5

10

15

20

25

30

35

40

45

50

55

E
la

st
ic

 m
o

d
u

lu
s 

(G
P

a
)

Sample number

 Actual   Predict   Error

 

Figure 4: Comparison of prediction and actual elastic modulus of the SVM model 
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Figure 5: Comparison of prediction and actual elastic modulus of the RF model 

3.2 Development on the Hybrid Ensemble Model 

In general, ensemble models can integrate multiple learning models to achieve superior 

performance compared to individual learning algorithms. A robust model can be developed by 

using various ensemble techniques, such as bagging, boosting and stacking. The RF was selected 

to construct the proposed hybrid model, which aggregates the outputs of individual models as 

new inputs and the experimental EM values as the final output dataset. Consequently, the hybrid 

model consists of two input variables and a single output variable. Figure 6 shows the 

performance of the hybrid model on both training and testing sets. It can be observed that the 

hybrid model attained a narrower interquartile range of the error box, indicating that the majority 

of errors produced by the hybrid model were more concentrated than those generated by the 

SVM and RF models. 
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Figure 6: Comparison of prediction and actual elastic modulus of the hybrid model 



The prediction accuracy of single models and the hybrid model is illustrated in Table 3. The high 

correlation coefficient on the testing set (0.9429) demonstrates the enhanced predictive capability 

of the proposed hybrid model. Additionally, lower MAE and RMSE values suggest the absence 

of overfitting. Furthermore, the linear relationships between the actual and predicted EM values 

were assessed for all models using scatter plots, as depicted in Figure 7. In comparison with 

single models, the proposed hybrid model displays more scatters distributed closer to the 

diagonal, which indicates a superior fitting ability. 

Table 3: Prediction accuracy of machine learning models 

  

RMSE MAE 

SVM 0.8505 1.8383 2.2107 

RF 0.9073 1.3745 1.8610 

Hybrid 0.9429 0.7881 1.0637 
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Figure 7: Illustration of regression plot between actual and predicted value of EM  

4. Conclusion 

This study presents an innovative and comprehensive approach to predict the elastic modulus of 

steel fibre-reinforced self-compacting concrete (SFRSCC) using hybrid machine learning models. 

The investigation involved the development and comparison of individual Support Vector 

Machine (SVM) and Random Forest (RF) models, followed by the introduction of a hybrid 

model that leveraged the strengths of both techniques. Both individual SVM and RF models 

demonstrated satisfactory prediction accuracy, with correlation coefficients of 0.8505 and 0.9073 

for the testing sets, respectively. The hybrid model, which integrated the outputs of SVM and RF 

models, achieved a superior performance with a correlation coefficient of 0.9429 on the testing 

set, alongside lower MAE and RMSE values, indicating its enhanced predictive capability and 

absence of overfitting. 

The findings of this study emphasize the potential of employing hybrid machine learning models 

for predicting the elastic modulus of SFRSCC, considering the complex relationships between 

various input variables. The proposed hybrid model offers a valuable tool for researchers and 

practitioners in the field of civil engineering, enabling efficient and reliable design and analysis 

of SFRSCC structures. Future studies may consider extending the application of the hybrid 



model to other SFRSCC properties and to investigate the incorporation of additional input 

variables along with expanding the dataset scale to further enhance prediction accuracy. 
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