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Abstract. A categorization of subsoil characterization approaches is used as the basis for 

evaluating them according to their capacity for model updating, quantifying uncertainties and 

modelling complex geometries. The information of using the right model at the right time is 

one of the most important sources of engineering knowledge. To ensure an equitable 

comparison under comparable starting conditions, three synthetic soil topologies are 

generated, each featuring relevant geological processes for subsoil characterization. In this 

study, we evaluated the performance of a voxel-based approach for subsoil characterization 

using the discrete output of Gaussian Process Regression (GPR). The evaluation based on the 

three metrics shows that the potential advantages are simplicity, ability to integrate new data 

and quantification of prediction uncertainty. Future work will focus on analysing additional 

approaches, such that an appropriate framework for digital-twins for geotechnical design and 

assessment can be defined. 

1. Introduction 

Geotechnical engineering applies the principles of soil mechanics to design structures in soil. In 

order to achieve this, engineers must study site-specific soil properties and their deformation 

behaviour under loads.  Das (2021) defines soil mechanics as the study of soil to understand the 

physical properties and their behaviour when subjected to load stresses. Lack of understanding of 

site-specific soil mechanics can negatively impact design decisions and lead to high economic 

consequences and safety issues, such as project delays and structural failure. However, 

characterizing soils and their behaviour is a complex task that relies on data from multiple sources, 

such as boreholes, cone penetration tests (CPTs), trenches, on-site (geophysical) tests, and site-

specific samples tested in laboratories (Zhang et al. 2018). 

To extract information from measurement data, several interpretation methods have been 

developed using data such as borehole logs, geological maps and cross-sections. Technological 

advancements have led to a rise in the amount of geotechnical data collected during a project 

(Chandler, 2011; Phoon, 2019). Advanced information management tools are required to manage 

and integrate such diverse data in real-time to be able to offer support for decision making during 

construction (Zhou, Ding and Chen, 2013). The use of building information modelling (BIM) has 

gained popularity in the geotechnical community due to their ability to structure project-related 

data and attribute it to individual components of 3D soil topologies (Tawelian and Mickovski, 

2016; Zhang et al., 2018). However, while the traditional BIM approach is useful for information 

management, it lacks the ability to quantify uncertainties. This is because traditional BIM 

approaches assume full knowledge of reality, while geotechnical engineering involves obtaining a 

subsoil topology by analysing a finite number of geological survey points (Wu et al., 2021). As a 

result, there may be significant uncertainty associated with site-specific knowledge of geotechnical 

properties. 
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The assumption of the probabilistic nature of soils is a result of the complex geological formation 

process of soils and our incomplete knowledge (Hu et al., 2020). Although the physical causes of 

soil formation are deterministic and obey the laws of physics, it is currently impossible to fully 

understand how they combine. Furthermore, it is difficult to study their variation over time with 

incomplete knowledge. As a result, soil formation is assumed to be random (Webster, 2000). For 

the task of estimating geotechnical properties, Kulhawy et al. (2006) refer to this uncertainty as 

the inherent soil variability. It introduces knowledge uncertainty, as full knowledge of all 

properties of the subsoil is not possible, making it difficult to quantify the accuracy of a 

characterization. 

In addition to the uncertainty related to soil formation, there are three other principal sources of 

uncertainty in geotechnical engineering: measurement errors, transformation uncertainties and 

statistical uncertainties. Measurement errors occur during the data collection process, which 

involves using specific equipment, procedures, and personnel. Transformation uncertainties occur 

when measurements are transformed into soil properties. Statistical uncertainty is the result of the 

limited availability of in-situ measurements, which is a common issue. Sparse data may result in 

unreliable soil descriptions that are overfitted to local data and underestimate uncertainties (Pyrcz 

and Deutsch, 2014). 

The uncertainties described above make subsoil characterization particularly challenging. An ideal 

approach should function with sparse data, allow real-time model updating, and enable the explicit 

quantification of knowledge of uncertainty. Geostatistical methods have been developed to address 

these challenges by modelling the distribution of soil types and their properties. These methods 

help integrate information from multiple data sources to infer representative statistics (Pyrcz and 

Deutsch, 2014). The effectiveness of geostatistical methods depends on the suitability of their 

application. This is important engineering knowledge that is rarely made explicit. 

In this paper we propose a classification of subsoil characterization approaches to facilitate an 

analysis of their strengths and limitations. To ensure an equitable comparison with similar starting 

conditions, we have generated three synthetic soil topologies, each featuring relevant geological 

processes for subsoil characterization. By using only simulated measurements to recreate the 

Figure 1 - Categorization for subsoil characterization approaches. The approach that is used in this paper is highlighted. 
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ground truth, subsoil characterization methods can be evaluated on metrics such as accuracy for 

complex geometries, data updating capabilities, and uncertainty quantification. Our study focuses 

on a voxel, cell-based subsoil characterization approach, serving as a proof-of-concept for this 

methodology, which can now be extended to analyse additional approaches. 

2. Classification of probabilistic subsoil characterization methods 

Figure 1 presents a classification of subsoil characterization approaches. At the highest level 

categorizes approaches into two types according to their representation: object-based and cell-

based. 

2.1 Object-based approach 

The object-based approach involves a representation of the geometry of geological bodies and the 

relationship between layers directly (Lyu et al. 2021).  

The 1D approach is utilized to identify stratigraphic layers from in-situ measurements assuming 

constant layers throughout the construction site. For example, Cao and Wang (2013) present a 

Bayesian approach to identifying soil layers and their thickness through CPT measurements, which 

differs from deterministic approaches that imply correlations based on empirical by clustering 

similar data points to identify layers. The Bayesian approach allows for the quantification of 

uncertainties. The approach output can serve as input for 2D/3D subsoil characterization methods.  

The object-based approach for the 3D representation often differs in the definition of the function 

used to describe the geological interfaces. The surface-based approach functions, which describe 

open shapes, are conditioned to geological data. The form of the function influences the 

interpolation for unknown points. After interpolation, expert knowledge is used to ensure 

coherence of the geological interfaces from a soil mechanical point of view. It is still common to 

perform this type of correction manually (Lyu et al. 2021). However, current work is focused on 

formalizing expert knowledge to provide greater support (Zhu et al. 2012). 

In the geometry-based approach, closed shapes (e.g. cylinder, circles, rectangles) are used to 

describe geological interfaces. However, they offer limited flexibility as they are difficult to 

condition to experimental data. They are typically used for reservoir modelling, where the focus 

lies on estimating the volume of for example oil pockets and where the exact trajectory of 

geological interfaces is less relevant (Pyrcz and Deutsch, 2014). 

2.2 Cell-based approach 

The second approach to subsoil characterization is the cell-based approach, in which the subsoil is 

discretized into a grid of cells, where each is described by a set of parameters and soil type. We 

distinguish between two possible formats of the approach. 

First, the mesh-based approach, unknown points are calculated using weighted averages of 

observational data. The chosen mesh structure will influence the boundaries between different soil 

layers. The calculation process is efficient, conforms to geological laws and respect the 

observations. However, it has limitations when complex geological interfaces, such as overturned 

folds, are modelled (Lyu et al., 2021).  

A sub-case of this approach, the voxel-based uses a structured grid to characterize subsoils. It is 

commonly used for stochastic modelling approaches when soil properties are described as random 
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variables and spatial variability is modelled as a random field (Wang et al., 2018). Investigations 

are usually performed on the discretized random field. As highlighted in Figure 1, in this work a 

voxel, cell-based approach is pursued. 

3. Numerical Investigation 

 

To compare subsoil characterization approaches, we have created three synthetic 2D soil 

topologies, as illustrated in Figures 2-4. Each topology was designed to represent at least one 

geological process. Topology 1 represents the process of sequential deposition of soil layers, while 

Topology 2 incorporates the effect of erosion during deposition, resulting in the next layer being 

deposited in the space resulting from erosion. Topology 3 represents a simultaneous deposition 

process, resulting in the formation of so-called lenses, which are islands of one soil type 

surrounded by another. For the description of the soil layers the common Soil Behaviour Index 

(SBT) 𝐼𝐶 is used, which is defined in Equation 1, below. 

A commonly used method for in-situ soil investigation is Cone Penetration Testing (CPT), which 

measures the mechanical response of soil to penetration using a cylindrical steel probe. This testing 

method provides continuous data over depth and is preferred over other methods due to its speed, 

repeatability, and affordability (Robertson, 2009). The data that is obtained from CPT includes the 

cone tip resistance 𝑞𝑇 and sleeve friction 𝑓𝑐 (Mayne, Christopher and DeJong, 2002). 

To synthetically generate CPT data, transformation functions are used to populate the synthetic 

topologies with 𝑞𝑇 and 𝑓𝑠 data. For each soil type, a Gaussian random field is generated for each 

Figure 2: Topology 1 showing the process of sequential 

deposition of soil layers.  
Figure 3: Topology 2 showing the erosion process in 

combination with sequential deposition of soil layers. 

Figure 2: Topology 3 is a result of simultaneous deposition 

of layers including lenses. 
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property. To describe the random field, we use the approximate guidelines for inherent soil 

variability that are described in Phoon and Kulhawy (1999). The parameter values that have been 

employed are provided in Table 1. 

Table 1: Summary of soil parameters for the description of the random fields with 𝜇𝑥 mean of property x, 𝛴𝑥 covariance for x and 

𝑙𝑥 , 𝑙𝑦 scale of fluctuation in x and y direction.  

𝑰𝑪 Soil Type 
𝝁𝒒𝑻

 

[𝑴𝑷𝒂] 

𝚺𝒒𝑻
 

[𝑴𝑷𝒂] 

(𝒍𝒙𝒒𝑻
, 𝒍𝒚𝒒𝑻

) 

([𝒎], [𝒎]) 

𝝁𝒇𝒔
 

[𝑴𝑷𝒂] 

𝚺𝒇𝒔
 

[𝑴𝑷𝒂] 

(𝒍𝒙𝒇𝒔
, 𝒍𝒚𝒇𝒔

) 

([𝒎], [𝒎]) 

2 Clays 0.5 0.2 (30, 0.5) 0.035 0.2 (30, 0.5) 

4 Silt mixtures 2 0.2 (40, 1) 0.08 0.2 (40, 1) 

5 Sand mixtures 10 0.3 (40, 1.5) 0.25 0.3 (40, 1.5) 

6 Sands 15 0.2 (40, 2) 0.11 0.2 (40, 2) 

This results in a random field description for each of the three soil topologies. One sample for each 

topology is drawn to obtain a ground truth topology for the numerical investigation. They can be 

seen in Figures 2-4. 

Based on empirical data, Phoon (1995) states that for CPT measurements an error of ~35% can 

be expected. As a result, an error term 𝜖4 that accounts for measurement errors is added to each 

simulated CPT measurement. 𝜖4 is normally distributed with zero mean with standard deviation 

equal to 0.35.  

The simulated measurements of 𝑞𝑇 and 𝑓𝑠 are used as an input in Equations (1) and (2) to obtain 

the soil behaviour type (SBT) index 𝐼𝑐  defined in Robertson and Wride (1998) and adapted in 

Robertson (2009): 

𝐼𝑐 = √(3.47 − log10

𝑞𝑇

𝑃𝑎
)

2

+ (log10 𝐹𝑅 + 1.22)2 (1) 

where 𝑃𝑎 is the atmospheric pressure (approx. 100 kPa) and 𝐹𝑅 the normalized friction ratio: 

𝐹𝑅 =
𝑓𝑠

𝑞𝑇
∗ 100% (2) 

Depending on the value 𝐼𝑐  that is obtained for given measurements, the soil can be categorized in 

one of six SBTs (see Table 2). 

Table 2: Classification of soil according to the soil behaviour type index by Robertson (2009) 

Zone Soil Behavior Type 𝑰𝒄 

2 Organic Soils: clay > 3.60 
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4. Gaussian Process Regression 

A widely used cell-based approach to subsoil characterization, Gaussian Process Regression 

(GPR), is investigated (Rasmussen and Williams, 2005). In geostatistics, it is commonly also 

referred to as Kriging. It is a regression analysis tool that describes a conditional random field by 

combining a prior multinormal distribution with observation data to obtain a posterior distribution. 

The posterior distribution is used to describe the statistics at unknown points.  

In this work GPR is used to obtain 𝐼𝐶  based on the simulated CPT measurements. A grid of 

100𝑥100 cells is defined. To describe the correlation between two points of the grid in relation to 

their relative distance, the anisotropic common squared exponential function is used, see Equation 

(3).    

Σx(𝑎, 𝑏) = exp (
𝑑(𝑎𝑥, 𝑏𝑥)2

2𝑙𝑋
2 ) (3) 

where 𝑑(𝑎, 𝑏) is the distance between two points and 𝑙𝑥 is the correlation length in the 𝑥-direction. 

An optimization is performed to obtain the correlation length (Pedregosa et al., 2011). 

The output of the GPR is a probability distribution for each soil type at each cell, which can be 

used for classification tasks such as identifying soil layers. The accuracy of the resulting estimates 

is dependent on the quality and amount of available data. In geotechnical engineering, the number 

of measurements is often limited due to cost considerations. Therefore, it is of interest to 

investigate the effect of varying amount of data on the uncertainty of the subsoil characterization 

and to investigate how to best represent and communication this uncertainty.  

4.1 Confidence 

The advantage of utilizing Gaussian processes for classification is their ability to quantify 

uncertainties associated with classifications. For each cell, the Gaussian process returns a 

probability for each possible soil type. The results of this approach can be seen in Figures 5a-f. Let 

us consider Topology 1 with six CPT measurements (see Figure 5a). An initial visual comparison  

shows good agreement to the ground truth (Figure 2). Figure 5b shows the confidence in the 

classification. Two conclusions can be drawn from this plot: (1) there is high uncertainty at the 

boundaries between two soil layers, but less within a single soil layer, and (2) there is high 

uncertainty at locations where 𝐼𝐶 obtained from the CPT measurements is faulty. This suggest that 

at these locations, the confidence in the classification is low, as multiple layers could potentially 

represent the data. In future work, the confidence values obtained from the Gaussian process can 

3 Clays: silty clay to clay 2.95 − 3.60 

4 Silt mixtures: clayey silt to silty clay 2.60 − 2.95 

5 Sand mixtures: silty sand to sandy silt 2.05 − 2.60 

6 Sands: clean sand to silty sand 1.31 − 2.05 

7 Gravelly sand to dense sand < 1.31 
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be used, for example, to guide the selection of optimal locations for performing the next 

observations.  

  

  

  
Figure 5: Left column:  Resulting distribution of 𝐼𝐶 for the Topologies and six CPT measurements (that are visualized with the 

black dotted lines); Right column: Display of the probability for identified 𝐼𝐶, which has the highest probability among all 

possible soil layers, at each grid point 

(a) 

(c) (d) 

(e) (f) 

(b) 
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4.2 Accuracy 

  

Soil  

Topology 

Number of CPT 

measurements 

3 6 11 21 

1 0.91 0.96 0.96 0.96 

2 0.87 0.95 0.95 0.96 

3 0.80 0.92 0.91 0.91 

To measure the performance of the equation the commonly used accuracy metric is used, as 

described in Equation (4). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

#𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
. (4) 

The number of correctly predicted cells is divided by the total number of cells.  

As shown in Table 2, the accuracy of the classification improves with an increasing number of 

CPT measurements. For an equidistant grid the improvement follows what seems a logarithmic 

path, with a high initial improvement that reaches a plateau (see Figure 11).  

This finding is relevant for data-driven inspection strategies as it quantifies the value of additional 

information, indicating a point at which the marginal benefit of additional measurements 

diminishes. In the following analysis, each case will be considered individually.  

The approach works well for Topology 1 where sequential deposition of different layers is 

considered. A visual inspection of Figure 5a shows that the largest source of error is the 

misclassification of the 𝐼𝑆𝐵𝑇 from the CPT data. 

Figure 12: Accuracy for each soil type 

for Topology 1 

Figure 13: Accuracy for each soil 

type for Topology 2 

Figure 4: Accuracy for each soil type for 

Topology 3 

Figure 3: Accuracy of characterization approach 

for different number of CPT measurements 

Table 3: Accuracy of the characterization approach for 

different number of CPT measurements 
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Erosion, as presented in Topology 2 is more challenging for this approach. If the accuracy of each 

soil layer is considered individually (Figure 13), the accuracy varies largely between them. The 

largest source of error is the erosion in the clay layer (see Figure 5c). This is due to the correlation 

function, which offers equal importance to each CPT measurement.  

The complexity of the layer distribution resulted from the simultaneous deposition is a large 

uncertainty for Topology 3. To obtain a more detailed representation, more measurements at 

critical points are required. In future work, it is of interest to research methods for the identification 

of such critical points and to quantify whether or not additional information will reduce the 

uncertainties. In addition, quantifying the value of additional observations can support the 

decision-making process to determine the best next step for investigation (Jiang, Papaioannou and 

Straub, 2020).  

5. Conclusion 

Our study has demonstrated potential advantages of categorizing subsoil characterization 

approaches based on their representation type for identifying their strengths and weaknesses. To 

compare various approaches, we generated three synthetic soil topologies, each featuring relevant 

geological processes. We evaluated the performance of a voxel-based approach for subsoil 

characterization on its capacity for data updating, uncertainty quantification, and modelling of 

complex geometries. The potential advantages of GPR are its simplicity, ability to integrate new 

data, and quantify prediction uncertainties. Future work will focus on analysing other approaches 

to improve our explicit understanding of the knowledge requirements for a digital-twin strategy 

for geotechnical design and assessment. 
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