Improving the Semantic Parsing of Building Regulations through
Intermediate Representations

Fuchs S', Dimyadi J "2, Witbrock M', Amor R’
'The University of Auckland, New Zealand
’CAS Limited, Auckland, New Zealand
sffc348@aucklanduni.ac.nz

Abstract. Recent developments show that large transformer-based language models have the
capability to generate coherent text and source code in response to user prompts. This capability can
be used in the construction domain to interpret building regulations and convert them into a semantic
representation usable for automated compliance checking. While base-size models can already be
taught to perform semantic parsing with decent quality, this paper shows how intermediate
representations (IR) can be used to improve the semantic parsing quality. With reversible IRs, the
training time could be reduced to almost a quarter of the initial duration, and through adding a
hierarchical parsing step, improvements of up to 6.6% on F1-Scores were reached.

1. Introduction

Semantic parsing has many applications, from program synthesis to interpreting robotic
commands and querying in natural language. Another potential use case is the interpretation of
norms such as regulations and standards, which is essential for automated compliance checking
(ACC) applications. ACC is an active area of research, particularly in the architectural,
engineering, and construction (AEC) domains. The primary challenges are the absence or lack
of digital regulations to convey the highly complex legalese, the availability and accessibility
of information from Building Information Models (BIM), the diversity of required checking
procedures (e.g., spatial reasoning), and non-conformity of terms used in BIM and regulations
(Solihin and Eastman, 2015). A common approach to address the machine-processability of
natural language regulations is translating them into a computable form, which an ACC system
can then utilise. Both the translation process and various formats’ representation capabilities
have received significant attention (Fuchs and Amor, 2021; Zhang and El-Gohary, 2022b;
Zhang et al., 2023). Approaches to translating building regulations range from manual expert
interpretation to fully automated translation. While most previous approaches divided the
translation process into one or more information extraction (e.g., entities, properties, relations,
exceptions) and transformation tasks, Fuchs et al. (2022) proposed to tackle the problem as a
seq2seq task using a transformer-based semantic parser. A seq2seq model is trained with pairs
of input and target sequences, allowing the model to learn the mapping between the two. It is
commonly used in tasks such as language translation, summarisation, and question-answering.

While semantic parsing is a promising direction, the performance of existing semantic parsers
for building regulations still falls short of expectations. Significant improvements in semantic
parsing of natural language expressions into SQL and SPARQL were achieved by coarse-to-
fine-grained parsing (Dong and Lapata, 2018) and using reversible and lossy intermediate
representations (IR) (Herzig et al., 2021). Both papers used the strategy to generate a simplified
representation as an intermediate step towards the final output representation. They retain the
benefits of seq2seq approaches, such as potentially reducing cascading errors and utilising the
strength of pre-trained language models while reducing the complexity of the task. This paper
investigates the potential of such methods to improve translating building regulations to
LegalRuleML (LRML), an emerging XML-based representation standard (Dimyadi et al.,



2017). Furthermore, we investigate suitable IRs for this task and whether multi-task learning or
training separate specialised models performs better. This paper contributes a method for a
faster and more accurate translation of building regulations into LRML and unlocks new
possibilities for interpretability and semi-automation using IRs.

2. Background

2.1 Transformer-based Semantic Parsing of LegalRuleML

Semantic parsing is the process of transforming natural language into a formal representation
of its meaning. Such representations range from semantic representations such as Abstract
Meaning Representation (AMR) to logical representations such as First-Order Logic or Lambda
Calculus, query languages such as SQL and SPARQL, and programming languages such as
Python and Java. LRML is a markup language designed to represent norms in a machine-
processable format. It incorporates both semantic and logical representations to enable
computers to reason about legal requirements. Fuchs et al. (2022) proposed to use a T5 model
(Raffel et al., 2020) pre-trained on AMR parsing to translate building regulations into the short
version of LRML shown in Listing 1. TS uses the transformer architecture proposed by Vaswani
et al. (2017). The model consists of an encoder to generate a latent representation of the input
and a decoder to combine the output generated so far with the input representation through an
attention mechanism and generate the following output token. The primary mechanism to
generate the latent representation is self-attention, i.e., each token is contextualized by
incorporating the relevant information of all other tokens in the sequence. The speciality of the
T5 model is that it formalizes each task into a text-to-text format by formulating the task with
an initial prompt, e.g., “translate English to German”, and all answers are transformed into a
textual representation, e.g., “True” and “False”, or “cat” and “dog”, rather than binary values 0
and 1 for classification tasks. This strategy makes the model easily applicable to a broad range
of tasks and suitable for multi-task learning, i.e., learning to do multiple tasks in parallel.

Input: 3.4.2 The floor waste shall have a minimum diameter of 40 mm.

Output: if(expr(fun(exist), atom(var(floorWaste)))),
then(obligation(expr(
fun(greaterThanEqual),
atom(rel(diameter), var(floorWaste)),
data(baseunit(prefix(milli), kind(metre)), value(40.0)))))

Listing 1: LRML Rule Example from NZ NZBC-G13AS1

2.2 Intermediate Representations

Any representation that falls between the input text and the target representation will be
considered an intermediate representation (IR). Representations that have the potential to be
generated more easily or that can support the generation of the target representation are of
interest. Accordingly, IRs can be related to hierarchical information processing, which was
applied to building regulations by Zhou and El-Gohary (2022) and Zhang and El-Gohary
(2022a). Considering the hierarchically complex structure of legalese, IRs are a great candidate
to support the semantic parsing of building regulations.

Herzig et al. (2021) distinguished between reversible and lossy IRs. Reversible IRs are
deterministic transformations of the original representation that can be undone by applying the
reverse function. An example of such an IR is combining entities and properties using a dot
notation: atom(rel(width), var(wall)) -> atom(wall.width). Lossy IRs are further distant
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from the target representation. Given a target representation, the lossy IR can be generated by
removing certain information. For example, to generate Python code, Dong and Lapata (2018)
replaced variable names with the name placeholder and values with their data type, e.g., NUMBER
or sTRING. Alternatively, a lossy IR can be generated from the input text. An alignment between
the input text and the target representation might be required, or the work-intensive task of
manually creating a ground truth must be conducted. The closest to our work is Ferraro et al.
(2020), who used the coarse-to-fine-grained parsing by Dong and Lapata (2018) to semantically
parse RegTech, a dataset with a lambda calculus representation of 140 sentences from general
regulations, including building regulations, shown in Listing 2. Compared to their work, we
generate LRML rather than parsing the clause into a representation used as a step towards
producing the computer-processable rules. Furthermore, we utilize pre-trained transformer
models rather than training an LSTM model from scratch and explore a broad range of settings
to investigate the potential of IRs.

Input: A large building is any building with a net lettable area greater than
300 m2.

Output: lambda $0 (if (a large building:$0) then (is any building with a lettable
area greater than ($0 300m2)))

Listing 2: RegTech Example (Ferraro et al. 2020)

3. Methodology

The first step in our work is to find reversible IRs for the verbose LRML representation shown
in Listing 1. The resulting reversible IR will be used throughout the rest of the paper. The
second step is to introduce lossy IRs as used in previous literature. Thirdly, a paraphrased legal
clause is generated as an intermediate step. Finally, the model’s capability to improve previous
predictions will be tested.

3.1 Reversible Intermediate Representations

A new simplified representation is predicted instead of the original representation. Then the
reverse function is applied to evaluate the quality of the translation. Accordingly, there is a
common measure to compare all results. Potential reversible IRs are identified by inspecting
the LRML dataset and the process used to create the initial data set (Dimyadi et al. 2020).

Unit: An automatic unit conversion enriched the LRML dataset with additional metadata. By
reverting the unit conversion, this overhead can be removed from the semantic parsing task,
and the existing unit conversion can be applied again afterwards:

data(baseunit(prefix(milli), kind(metre)), value(40.0)) ->data(40 mm)
And/Or: Many occasions were identified where expressions needed to be repeated for different

data values. To avoid this redundancy, we allowed conjunctions and disjunctions in the data
field and combined consecutive expressions with such duplication. E.g.,

data(or(metal, wood))

Atom: The nesting of atoms inside expressions increases the length further. This was addressed
by expressing subjects and their properties using a dot notation:
atom(rel(diameter), var(floorWaste)) -> atom(floorWaste.diameter)

Expression: The remaining expressions can be simplified further by utilising the function terms
directly and inserting the atom and data values as arguments:



expr (fun(greaterThanEqual), atom(floorWaste.diameter), data(40 mm) ->
greaterThanEqual (floorWaste.diameter, 40 mm)

Loop: Fuchs et al. (2023) identified loops as especially problematic due to their complex
representation. Accordingly, the following simplification was applied:

expr (rulestatement (forEach(..)), appliedstatement(is(..))) -> loop(forEach(..), is(..))

These simplifications lead to a shorter representation with the following expected benefits for
semantic parsing: 1) faster training and inference, 2) fewer syntactic mistakes, 3) reduced
complexity, and 4) increased training stability.

3.2 Lossy Intermediate Representations

Given the simplified LRML representation, the lossy IRs are generated by dropping some
elements or extracting others. Separate models are trained as demonstrated in Listing 3. Model
1 predicts the IR, and Model 2 the final LRML rule given the legal clause and the predicted IR.
As alternatives, Model 2 can be trained using the oracle IR or both the predicted and oracle IR.
This experiment shall indicate whether it is more critical for Model 2 to receive a correct IR
during training or if it is better to prepare the model for data closer to what is expected at test
time. Since a model pre-trained on a related task can benefit the final semantic parsing task,
Model 2 is either trained from scratch (i.e., T5S-AMR) or based on Model 1. Finally, an
investigation is conducted on whether and how well Model 2 utilises the IR. The evaluation
includes three versions of the test set: 1) Input plus predicted IR, 2) Input plus oracle IR, and 3)
Input only. As an intuition, the parsing quality should increase if the predicted IR is good
enough, the quality should be close to perfect given the oracle IRs (depending on the closeness
of the IR), and in the last case, the model should still be able to predict meaningful LRML rules,
given it does not entirely rely on the IR. The following IRs were explored:

Entity extraction: Most previous approaches to automate the translation of building
regulations were based on entity extraction. A natural way to begin the manual translation is to
identify the main entities and properties in a legal clause and their logical connections. We
extract a unique set of all subjects, properties, and objects from the LRML representation.
Listing 3 shows how the models are trained using this IR.

Model 1:

Input: extract LegalRuleML entities: G13AS1 3.4.2 The floor waste shall have a
minimum diameter of 40 mm.

Output: floorWaste, diameter, 40 mm

Model 2:

Input: translate English to LegalRuleML: G13AS1 3.4.2 The floor wastel[..]<sep>
floorWaste, diameter, 40 mm

Output: if(exist(floorWaste)), then(obligation(greaterThanEqual(floorWaste.diam.

Listing 3: Example input and output for lossy IRs

Expressions only: Identifying the correct logical connections between expressions is of
particular importance. Having expressions falsely assigned to the antecedent or consequent,
having expressions connected with conjunctions rather than disjunctions, or missing negations
can result in rules being not or falsely triggered and compliance issues being falsely reported
or missed. There is a high likelihood for such cases to happen in machine learning because such
labels are often unbalanced, and a model might learn to predict the more common case. This
difficulty is counteracted by predicting only the expressions in the first step, i.e., removing if
then, and, or, not, obligation, etc. We hypothesise that it will be easier to identify those logical
connections after all expressions were identified, e.g., exist (floor..), greaterThanEqual(..)



3.3 Paraphrases as Intermediate Representation

Instead of generating the IR from LRML, simplifying the natural language legal clause might
enhance the parsing quality. We manually constructed paraphrases, in a way similar to
controlled natural languages, by applying the following transformations to the text:

If-then structure: Reorder the clauses and embed them into an if-then structure: 1f a floor
waste exists, then..

Remove unnecessary text: Remove text not represented in LRML, including statements
describing the reason for a particular legal requirement and the simplification of long phrases.

Coreference resolution: Repeat entities if references occur over a longer distance, e.g.: 1f a
floor waste exists, then the floor waste shall..

Scope of conjunctions and disjunctions: It can become unclear how disjunctions and
conjunctions are nested in long clauses. This problem is remediated by explicitly adding the
connectors and indicating the start of disjunction using phrases such as either..or..or....

References: References to documents, clauses, tables, and figures are prevalent in legal text.
The LRML rules contain the document code for such references, while in the legal clauses,
references to the same document are often implicit: e.g., this document, Table 4.5. Document
codes are added to such instances to support the parser (13/as1, C/AS2 Table 4.5).

In contrast to lossy IRs, the paraphrases were not appended to the Model 2 input, but Model 2
was trained to predict LRML directly from the paraphrased clause as in Herzig et al. (2021).
While this decision puts more importance on the quality of the paraphrases, it removes the need
to share attention between the two inputs.

3.4 Self-reflection

In Section 3.2, expressions were isolated as IR, leaving out logical connections. This IR is very
close to the target representation, which raises the question: What if the target representation is
appended instead of the IR and the model has the chance to correct mistakes made during the
initial predictions? Can the model recognize such mistakes given the additional right-hand
context? These questions relate to the recent successes of GPT-4 in showing signs of self-
reflection with the ability to improve its previous outputs by being prompted about the
correctness of its responses (Shinn et al. 2023). While such behaviour might exist for large
language models, we evaluate if smaller TS models can also improve themselves and if this
method can be used for ensembling generation models.

These questions are tested by training separate models as described in Section 3.2. Model 1
predicts LRML as IR, given the regulation clause. Model 2 predicts or improves the LRML
rule, given the regulation clause and the LRML rule predicted by Model 1. The main intention
is to train Model 2 to correct mistakes made by Model 1. But if Model 1 is overfitting the
training data, it might not produce any output with errors. A separate experiment is conducted,
where IR predictions for the training data are generated before overfitting the training data. As
in previous experiments, the test and validation IR predictions are from the best Model 1.

4. Experimental Results

T5-AMR was trained as per Fuchs et al. (2022). The following hyperparameters were changed
to achieve more stable training: Learning rate: le-4, Batch size: 8, No Early Stopping.
Following Fuchs et al. (2023), we report BLEU and LRML F1-Scores averaged over three runs
with different random seeds and evaluate on random test splits (RTS) and document test splits
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(DTS). The RTS is 8:1:1 for training, validation, and testing (i.e., 576/71/71 samples). Since
the DTS in Fuchs et al. (2023) had fewer samples, we randomly selected training and validation
samples to match the RTS (i.e., 576/71/55 samples). We adjust the generation arguments to
limit duplicated outputs: Repetition penalty: 1.2, No repeat n-gram size: 9 and 13 (after and
before shortening the expressions in Section 3.1), Beam size: 3. Post-processing of model
outputs was conducted to fix the tree structure based on the if- and then-keywords.

The future work proposed by Fuchs et al. (2023) was addressed to improve the consistency of
the LRML rules by addressing the following issues:

- Logical consistency: Ensure that if-statements contain only selection and applicability
criteria (Ilal and Giinaydin 2017).

- LRML order: The order of LRML expressions is aligned to the legal text.
- Translation consistency: The same types of phrases are translated the same way.
- Granularity: The granularity of concepts is aligned to IFC, UniClass and Omniclass.

- Remove clauses deemed untranslatable: Remove clauses such as the ones in B1/AS1
describing textual changes to referenced standards (Fuchs et al. 2023).

- Complex expressions: Define variables and use loops only where necessary.

4.1 Reversible Intermediate Representations

The transformations discussed in Section 3.1 were applied step by step. Since the And/Or-
transformation was the most questionable, the experiments were conducted with and without
this transformation. Table 1 shows the results of the experiments. Most significantly, the
training time could be decreased to nearly a quarter of the initial time. Furthermore, the F1-
Score for the random split increased by 2% when applying all transformations. The unit and
expression transformations achieved the most significant improvements. The DTS led to
somewhat counterintuitive and unstable results. The Atom-transformation with the And/Or-
transformation leads to worse outcomes, but without the And/Or-transformation, it leads to the
best result. Because of the inconsistent results, the smaller size, and the high sample similarity
of the DTS, and because F1-Scores were used for the model selection, we rely primarily on the
RTS F1-Score and use the LRML representation with all transformations for the experiments
in Sections 4.2 to 4.4.

Table 1: Results for reversible IRs. We report the average Runtime, BLEU and F1-Score for DTS
and RTS and the standard deviation in brackets.

IR Runtime | DTS - BLEU | DTS - F1-Score | RTS - BLEU | RTS — F1-Score
Baseline 4672 | 65.1%(1.1) | 55.9%(0.3) | 68.4%(0.6) | 64.4% (0.4)
+ Unit 4063 | 66.3% (1.1) | 57.0%(2.0) | 71.2%(1.0) | 65.2% (0.6)
+ And/Or 2437 | 62.9% (2.0) | 55.6%(1.1) | 71.6% (1.9) | 65.3% (0.9)
+ Atom 4703 | 64.9% (3.5) | 55.6%(1.2) | 71.7%(1.6) | 65.2% (0.9)
+ Atom (w/o And/Or) 4256 | 68.1%(1.0) | 58.5% (0.8) | 70.5% (1.4) | 65.4% (1.0)
+ Expression 1484 | 62.7% (5.0) | 56.4%(12) | 71.7%(0.7) | 65.8% (1.3)
+ Expression (w/o And/Or) | 1952 | 66.2% (0.2) | 55.5% (0.6) | 71.6%(3.0) | 64.9% (1.9)
+ Loop 1270 | 64.7% (0.3) | 554%(12) | 71.1%(1.1) | 66.4% (0.3)
+ Loop (w/o And/Or) 1548 | 66.3% (2.1) | 56.6% (0.8) | 71.2% (0.4) | 65.9% (0.6)
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4.2 Lossy Intermediate Representations

Table 2 shows the effectiveness of the lossy IRs described in Section 3.2. Using expressions as
IR improved the DTS results by 1.7% but only by 0.5% for the RTS in the best setup. In contrast,
for RTS, there are consistently high improvements using entities as IR, with up to 4.6% for the
multi-task model trained on both the predicted and the oracle entities. Continuing the training
from Model 1 worked in most cases better than training a new model from scratch. This might
be the case since Model 1 has already learned to use the regulation clause and does not rely too
much on the IR after refinement. This is especially noticeable for the expression IR since the
separately trained model has F1-Scores of 0% when removing the IR. Also, this model scores
close to 100% given the oracle expressions, which indicates it primarily relies on copying the
inputs. A significant challenge is the correct generation of the IR. E.g., extracting the entities
for the DTS had only a BLEU-Score of 45.3%. For the RTS, the BLEU-Score was 62.9%.
These BLEU-Scores might also explain why this IR was only helpful for the RTS. The low
BLEU-Scores and the oracle results indicate that we could improve the parsing performance by
enhancing entity extraction. A dictionary-based approach could be investigated in future work.

Table 2: Results for lossy IRs in F1-Scores. We report two IR experiments: Entities and Expressions
(EXPR). We differentiate between training separate models (SEP) and refining Model 1 (MUL).

IR |Model| Data |DTS-Oracle | RTS-Oracle | DTS-w/o IR | RTS-w/o IR| DTS | RTS
B g | Prediction 75.6% 80.4% 38.6% 36.4% 55.5% | 68.2%
N E Oracle 77.0% 81.8% 35.7% 34.5% 55.1% | 68.7%
T P | Combined 77.0% 82.2% 40.4% 38.5% 55.0% | 69.7%
I M | Prediction 73.9% 79.2% 51.9% 58.1% 55.6% | 69.6%
T U Oracle 76.0% 82.3% 48.2% 55.6% 55.0% | 68.9%
Y L | combined 74.9% 82.0% 51.5% 59.4% 55.1% | 71.0%

g | Prediction 92.0% 94.9% 0.0% 0.0% 56.4% | 65.0%
E E Oracle 97.6% 97.5% 0.0% 1.0% 56.0% | 64.4%
X P | Combined 97.0% 96.9% 0.0% 0.3% 56.2% | 65.1%
P |\ |Prediction 72.5% 85.3% 53.2% 62.1% 57.1% | 66.9%
R U Oracle 97.5% 97.6% 26.6% 32.1% 56.0% | 64.5%

L | combined 91.1% 94.8% 51.8% 62.9% 56.3% | 66.4%

4.3 Paraphrases as Intermediate Representation

Using paraphrases as IR gives improvements of up to 2.3% for the RTS (see Table 3). It is
unclear if the main reason for the improvement is the IR or the additional training data since
having two versions of input resulting in the same output could also be beneficial for learning.
By training a model with both the original and paraphrased clauses, we can confirm that this
might be the case (i.e., 70.1% F1-Score for the RTS). The DTS results deteriorated, possibly
caused by the weak paraphrasing performance: 35.6% and 56.0% BLEU for DTS and RTS.
Nevertheless, testing with the oracle paraphrases indicates that a simplified systematic
formulation of legal texts, or potentially a natural language rewriting, might allow legal experts
to produce LRML or other semantic representations without much knowledge engineering
experience. This could also be integrated into a user-friendly semi-automated LRML translation
interface.



Table 3: Results for paraphrases (PARA) as IR measured in F1-Scores. SEP: Separate models;
MUL: Refining Model 1

IR | Model| Data DTS-Oracle | RTS-Oracle DTS RTS
g | Prediction 71.4% 82.1% 53.8% 66.7%
P E Oracle 71.6% 81.5% 52.7% 66.4%
A P | Combined 73.0% 84.8% 53.9% 68.9%
R\ 1 |Prediction 69.2% 81.1% 53.3% 67.7%
Al yu Oracle 70.6% 80.6% 53.0% 66.7%
L | combined 71.7% 83.8% 54.6% 68.9%

4.4 Self-reflection

The T5 model was tested on its ability to correct mistakes. As indicated in previous results and
according to Table 4, a newly trained model does not seem to learn anything but copy the LRML
rules. Also, the multi-task model trained with the oracle LRML rules only learned to copy the
inputs. But it is also noticeable that in contrast to separately trained models, the multi-tasking
model does not entirely unlearn predicting the LRML if no IR is given. Slight improvements
were achieved in the multi-tasking setup and training with the predictions. Furthermore, our
overfitting hypothesis is strengthened through the last experiment, where the F1-Score
increased to 70.9% with the initial LRML rules predicted after three epochs. In this experiment,
training with the oracle and predictions decreases the performance since the model starts
copying the inputs. Nevertheless, the best-performing model was better when removing the
predicted LRML and only slightly better with the oracle LRML. So, whether the model made
meaningful corrections or whether the appended LRML rules improved the training process is
questionable.

Table 4: Results for self-reflection experiments measured in F1-Scores. SEP: Separate models; MUL:
Refining Model 1; REFLECT: LRML generated with the best IR model; OVERFIT: LRML generated
after three epochs

IR | Model| Data |DTS-Oracle | RTS-Oracle | DTS-w/o IR | RTS-w/o IR | DTS-F1 | RTS-F1
- T5 Original - - - - 55.4% | 66.4%
R g | Prediction 98.6% 97.4% 0.0% 0.0% 55.3% | 66.3%
E E Oracle 99.3% 98.5% 0.0% 0.0% 55.5% | 66.4%
]lj P | Combined 98.9% 98.2% 0.0% 0.0% 55.4% | 66.5%
E M Pred 76.1% 85.7% 53.1% 66.7% 55.9% | 67.3%
C U Oracle 98.8% 98.3% 45.2% 54.2% 55.4% | 66.4%
T L | combined 90.8% 95.0% 52.3% 65.5% 55.5% | 67.7%
0] N Pred 73.6% 87.5% 0.0% 0.0% 56.4% | 65.5%
Vv E Oracle 99.3% 98.5% 0.0% 0.0% 55.5% | 66.4%
E P | Combined 98.9% 98.2% 0.0% 0.0% 554% | 66.5%
I; M Pred 59.8% 73.3% 56.4% 71.0% 56.5% | 70.9%
I U Oracle 98.8% 98.3% 45.2% 54.2% 55.4% | 66.4%
T L | combined 90.8% 95.0% 52.3% 65.5% 55.5% | 67.7%




5. Discussion

Applying the reversible IR described in Section 3.1 reduced the number of sub-word tokens of
the LRML rule from an average of 181 and a maximum of 911 to an average of 82 and a
maximum of 408. This reduction can be considered an essential step towards the lossy IR and
self-reflection experiments where the generated IR was appended to the input text. The entity
IR and self-reflection then brought the main F1-Score gains.

A more general contribution is the experimental outcome of Section 4.4, which indicates that
having knowledge of previous outputs can positively influence the training. This could be due
to having an example translation, which, in our case, is based on the corresponding input. This
phenomenon should be further researched, including the adaptability to related tasks.

There are two primary threats to the validity of this study. First, we used the DTS proposed in
previous work to allow comparability between the results. Some of the results for the DTS do
not reflect the conclusions drawn from the RTS. While we expect this to be related to the DTS
test set’s smaller size and diversity, further examination will be required. Second, the LRML
dataset is still a work in progress and shall be extended in future work. Especially an
independently created test set is planned to strengthen the trustworthiness of the results and
remediate the issues related to the DTS.

6. Conclusions

This paper shows that reversible intermediate representations (IR) can reduce the training time
to almost a quarter and improve the semantic parsing quality by 2%. Using entity extraction as
IR leads to further improvements of up to 4.6%, and manual simplification of legal clauses
could help enhance the parsing quality by 18.4% to 84.8%.

The significance of these results is threefold. First, shorter training and inference time allow
potential collaboration between expert and machine. The semantic parser can generate initial
translations, which experts can improve. Partial translations and auto-completion can limit the
manual effort required for these improvements. Second, the increased quality of the LRML
translation is a step towards fully automated translation. While the scores are not yet perfect,
the outputs are very promising. Currently, the evaluation is against a single possible translation.
In future work, we must consider logically equivalent solutions and add a more fine-grained
assessment closer to the representation's end use. Third, while entities and paraphrases as IRs
bring improvements by themselves, integrated into a user interface, they would be reviewable
and improve interpretability. IRs also open a new way of expert collaboration by allowing
experts to annotate entities to improve the translation or to paraphrase the legal clause instead
of manipulating the LRML rule directly.

In future work, the translation quality could be improved by introducing better entity extraction
and using large language models or pre-training for text simplification. The self-reflection
capability could be improved by using data augmentation to generate a more versatile set of
translation mistakes, which the correction model should learn to fix. Additionally, the ability of
large language models to generate LRML directly in a few-shot learning setup should be
explored.
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