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Abstract. The number of bridges has increased, and the data acquired from bridge maintenance 

works have accumulated more in the bridge management systems (BMS). However, the current 

inflexible BMS schema is limited in dealing with large-scale data with complex relationships. The 

historical inspection and repair data of the bridges were not able to be considered during 

maintenance cost estimation in practice because of the complexity of joining the BMS data. 

Therefore, this study proposed a model for converting BMS data into a graph database by modelling 

the relationships between graphical nodes. The authors then compared the clustering results between 

the existing relational database model and the proposed graph-based model. The experimental 

results of the silhouette coefficient demonstrated that the graph-based model outperformed the 

existing base model. In addition, a significant difference in historical maintenance cost was 

identified. This research suggests a promising direction of utilizing graph database to enhance the 

clustering performance for bridge maintenance cost estimation. 

1. Introduction 

The number of bridges has been increasing yearly, while many countries have limited budgets 

and resources for bridge maintenance. South Korea is also experiencing an increased, required 

maintenance budget because national bridges have been growing in length, but their condition 

grades are deteriorating. However, the current practice of estimating bridge maintenance cost 

is based on the number of bridges and their approximate condition grade, without considering 

the unique structural and operating characteristics of each bridge. Even if the bridges have the 

same condition grade, the required repair costs can vary significantly depending on their 

individual characteristics. Thus, the cost estimation for bridge maintenance by grouping bridges 

with similar characteristics is necessary to ensure optimal allocation of resources per different 

bridge groups and prepare effective maintenance strategies (Cheng and Leu, 2009). 

Several research has been conducted to group similar bridges by using the data collected in the 

bridge management system (BMS) (Miyamoto et al., 2000; Wu et al., 2021). In general, BMS 

is designed as a relational database (RDB), which is a highly structured database in a table form. 

RDB has the advantage of consistent data management with its structured schema, but it also 

limits the flexibility to modify the data structure and perform complex joins between tables 

(Nayak et al., 2013). In BMS, the basic specifications of the bridge and the annual inspection 

and repair records are often stored as separate tables in practice. In this situation, the latent 

knowledge and the relationships among variables are missed and data analysis becomes limited. 

To overcome the limited usage and applicability of the traditional RDB, a graph database is 

introduced to explain the relationships among data.  

In this paper, the authors devised an approach to clustering the bridges using a graph database. 

This approach can consider the latent features which were hard to be considered in the 

traditional relational BMS. To achieve the goal, several tasks were completed. The first task 

generated the graph database and transformed the original BMS data into it. Secondly, the 

research embedded the features in nodes and the relationships as vectors. Third, the embedded 

data were clustered using the K-means++ algorithm. The clustering performance of the graph-

based and base models were compared using a silhouette coefficient value. Lastly, the authors 
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validated the usability of clustering for the maintenance cost estimation using the historical 

repair and inspection data.  

2. Literature Review 

The authors reviewed previous research on the clustering of bridge management data and the 

effectiveness of graph database techniques.  

The expected bridge maintenance cost has been calculated by multiplying the representative 

maintenance cost of each condition grade by the number of bridges (Sun et al., 2020). This 

uniform unit cost by the bridge condition grade has limitations to reflect the structural and 

operating characteristics of each bridge. Many researchers have thus attempted to apply the 

clustering algorithms to group the bridges based on their similarities, such as their locational 

proximities, structure type, and material, and assign appropriate maintenance costs per bridge 

clusters (Cheng and Leu, 2009; Galvan-Nunez and Attoh-Okine, 2017; Radovic et al., 2017). 

They often used the bridge’s basic specifications data from National Bridge Inventory (NBI) 

database like BMS for clustering. However, due to the complex multidimensionality of the 

database, the data gathering has been used in a limited way. To overcome the limited usage of 

the data, additional efforts have been made. For instance, Liu and El-Gohary linked the data 

extracted from bridge inspection reports for clustering (Liu and El-Gohary, 2022). Despite the 

efforts, there is still a lot of room to improve bridge clustering results. Recently, there has been 

a growing interest in various fields to improve data modeling and clustering performance by 

using a graph database (Tiwary et al., 2022). 

To summarize, many researchers have utilized BMS data which are structured in relational 

databases (Ghahari et al., 2019) to perform efficient maintenance data analysis. However, due 

to the limitations of the data structure and inflexible formats, the decision makers are facing 

practical drawbacks. In this study, the authors propose a method to overcome these limitations 

by converting the relational database into a graph database.   

3. Research Process 

Figure 1 shows the research framework. The prepared data were the records of the bridge’s 

decks in the Korean BMS from 2009 to 2022. There were three kinds of data tables related to 

maintenance. The first table was the specifications of the bridges, which included basic 

information (e.g., construction year, structural type, length, width, and whether the seismic 

design was applied). Environmental information (e.g., the annual daily traffic and precipitation) 

was also set as properties. A total of 4,063 bridges with at least one deck inspection record were 

used. The second table was the historical inspection records of the bridge decks. This table 

included information on when the inspection was performed, the extent of the observed 

damages, and the expected cost of repair and reinforcement works. There were 9,320 records 

in this table. The third table comprised of the repair and reinforcement project information. This 

table contained information on when and how much the repair and reinforcement works were 

performed for each bridge, and there were 1,657 records in total.  

The authors created the base model and the proposed model to compare clustering performances. 

The base model only used the bridge specification data such as length, width, construction date, 

and environmental variables for clustering. The proposed model used the bridge specification, 

inspection records, and repair records together to generate the graph database for clustering.  
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Figure 1:   Research Framework 

3.1 Nodes, Relationships, Properties Setting for Graph Database  

Neo4j, which is one of the best functional non-relational databases (Fernandes and Bernardino, 

2018), was used to create the Korean BMS data as the graph database. It stores and manages 

the data in the form of nodes, relationships, and properties. It is supported by a query language 

called Cypher (Francis et al., 2018) to retrieve and analyze the data in Neo4j. 

Before making the graph database, the ontology for bridge maintenance data was generated to 

set the entities and their relationships clearly. The ontology served as a blueprint for graph 

database generation. As shown in Figure 2(a), the bridge is the main node in the ontology, and 

the related nodes are connected by edges. Figure 2(b) is the meta graph of BMS data imported 

in Neo4j. When importing them in Neo4j, the variables presenting the node were converted to 

properties in each node. Table 1 shows the sample of main nodes and their properties. The 

bridge node contained the properties that represented the specifications of the bridge. The 

inspection node contained the defects-related information observed in the deck. If defects 

occurred on the bridge, the quantity of defects and the expected maintenance cost were filled 

as properties. For example, the ‘B07101’ was the code of the defect which meant ‘Crazing in 

Reinforced Concrete’, and the attached number meant the quantity of the defect. The repair 

work node contained the repair and rehabilitation method with their cost. The ‘Cost_100’ was 

the code of the repair method which meant ‘Injection,’ and the attached number represented the 

cost of the repair method.   
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Figure 2:   Concept on the Bridge Maintenance Data Graph:  

(a) Bridge Maintenance Ontology, (b) Meta Graph in Neo4j 

Table 1:  Properties of each Nodes. 

Node 

Labels 

Number of 

Node 
Property (sample) 

Bridge 4,036 

BRDG_SEQ:1876, ADT:26199.67, ADTT:283.17, CONST_DATE:1998-12-31, 

DESIGNLIVELOAD:24, ELMNT_SIZE:8745.0, FACILITY_CODE:1, 

HEATWAVE_DAYS:10.33, HEIGHT:37.3, LENGTH:750.0, 

PRECIPITATION_TOTAL:1497.97, SEISMICDESIGN:2, 

SUPERSTRUCTURE:29, TEMPERATURE_WINTER:-0.47,  

TEMPERATURE_YEAR:12.2, WIDTH:11.0 

Inspection 9,320 

brdg_inspctdt:2552_20130420, BRDG_SEQ:2552, B07100:71.6, B07101:0.0, 

B07102:0.0, B07103:0.5, B07105:0.0, B07106:5.95, B07107:0, B07108:40.88, 

B07111:0.0, B07121:0.0, B07200:0.0, B07201:0.0, B07202:0.0, B07221:0.0, 

B07222:0.0, B07326:0.0, B07999:1730.62, ELMNT_GRADE:2(B), 

INSPCT_YEAR:2013, PRIORITY:3, TOTAL_EXPCTCOST:1741426.36, 

USEYEAR:26.3 

Repair 

Work 
1,847 

brdg_rprdt:10044_20171222, BRDG_SEQ:10044, CMPLT_DT:2017-12-22, 

Cost_100:97.0, Cost_200:5714.0, Cost_300:48817.0, Cost_600:0.0, Cost_800:0.0, 

RPRYEAR:2017, TotalCost:54628.0, 

 

Table 2 shows how the nodes were connected by relationships. The authors focused on what 

the existing relational database could not express and tried to inherit the knowledge of bridge 

maintenance in the graph database. The “Inspected” and “Repaired” relationships were 

modeled to imply which maintenance work was done on the bridges. The “followedBy” 

relationships served as a link connecting the preceding inspection and the subsequent repair 

work. The “includedIn” relationships connected the repair work and the parent projects to link 

the bridges that had been repaired together by the same project. The “ManagedBy” relationships 

connected the bridges managed by the same agency.  

Table 2: Node and Relationship of the BMS data modeled in Neo4j (Continue). 

Relationship (Node)-[Relationship]->(Node) Meaning 

Inspected (:Inspection)-[:Inspected]→(:Bridge) Bridges are connected to their inspection records. 

Repaired (:RepairPjt)-[:Repaired]→(:Bridge) Bridges are linked to repair work performed.  

includedIn (:RepairPjt)-[:includedIn]→(:Mproject) Each repair work is connected to a parent project. 
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followedBy (:RepairPjt)-[followedBy]→(:Inspection) 
The repair work performed after the inspection is 

linked. 

ManagedBy 
(:Bridge)-[:ManagedBy]→(:Agency) 

(:Bridge)-[:ManagedBy]→(:SubAgency) 

Bridges are managed by agency and their 

subagency. 

Subgrouped (:SubAgency)-[:subGroupOf]→(:Agency) Subagency is the subgroup of the agency. 

isOnthe (: Bridge)-[:isOnthe]→(:RoadLine) Bridges on the same road line are connected. 

 

3.2 Graph Embedding  

Graph data have a triple form, and are expressed as the nodes and the edge connecting them 

(Angles, 2012). It means the graph database often has complex relationships and structures that 

can be expressed in high-dimensional representation. Thus, a process of capturing typological 

information from the graph database is required. This process is called graph embedding, which 

transforms nodes of the graph into a low-dimensional vector (Grover and Leskovec, 2016). 

Graph Data Science (GDS) library in Neo4j supports several graph embedding techniques. The 

authors chose the GraphSAGE algorithm, which can preserve the typology, connectivity, and 

attributes of the neighboring nodes and relationships as vectors. It is an inductive representation 

learning algorithm by sampling and aggregating features from a node’s local neighborhood 

(Ahmed et al., 2017). The nodes of the bridges, their properties, and their relationships were 

projected onto an in-memory graph using the GDS library to use GraphSAGE. After projection, 

the GraphSAGE algorithm trained the feature properties and returned the embedded vectors. 

The embedded vector representing the bridges was then imported to Python as a form of the 

data frame to be fed into the K-means++ clustering algorithm. The authors defined these 

embedded values as a dataset for the proposed model. 

3.3 Clustering  

Two datasets were prepared for clustering. One dataset was in the form of a relational database 

from the original BMS for the base model. Twenty-four variables representing the basic 

specifications of the bridge were selected and scaled for data standardization. The other dataset 

was the graph embedding data that historical maintenance information was inherent for the 

proposed model. Before clustering, the two datasets were analyzed by principal component 

analysis (PCA), which is the technique to reduce the dimensionality of the dataset while 

retaining important information (Abdi and Williams, 2010). The authors chose the K-means++ 

algorithm for clustering, which is a method to minimize the average squared distance between 

the data points inside the same cluster with a randomized seeding technique (Arthur and 

Vassilvitskii, 2007). It is known to show more consistent results than K-means by locating the 

initial centroids far from each other. The number of clusters which is K, was set using the elbow 

detection algorithm (Kodinariya and Makwana, 2013). The authors set the optimum number of 

clusters as three, which was the elbow point and also an appropriate number to interpret the 

result. In the final stage, the bridges assigned at the same cluster can be considered as bridges 

having similar characteristics. 

3.4 Evaluation 

The clustering performance was hard to be quantified because it is an unsupervised learning 

algorithm. The silhouette coefficient of the base model and the proposed model from clustering 

results can be used to compare the tightness and separation of the cluster (Rousseeuw, 1987). 
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A silhouette score presents a measure of the proximity of each point in a cluster to points in 

neighbouring clusters, ranging from -1 to 1. The score calculates the cohesion of a cluster by 

averaging the distances between one random data point and all other data points within the same 

cluster, as shown in the equation below. 𝑎(𝑖) is the mean intra-cluster distance, and 𝑏(𝑖) is the 

mean nearest-cluster distance for each data point.  

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max {𝑏(𝑖),𝑎(𝑖)}
         (1) 

However, it is not possible to confirm that the purpose of clustering has been achieved only 

with this score. Thus, empirical evaluation should be done to validate whether the proposed 

graph-based clustering model for bridge maintenance cost estimation is acceptable or not. The 

authors statistically compared each cluster's historical maintenance cost and the characteristics 

to confirm the clustering performance. 

4. Experimental Results  

4.1 Bridge Clustering Results  

Figure 3 represents the distribution of bridge data transformed in the two-dimensional space. 

The shape of the cluster did not determine whether the clustering had been successfully 

achieved as intended. However, some observations were able to be attained. Firstly, in the base 

model, ‘cluster 1 (Orange color dot)’ exhibited distinct characteristics compared to the other 

two clusters. Similarly, in the proposed model, ‘cluster 1 (Orange color dot)’ showed clear 

differentiation from ‘cluster 0 (Blue color dot)’ and ‘cluster 2 (Green color dot)’ in terms of its 

distinct features.  

The average silhouette coefficient supported the superiority of the proposed graph-based model 

with a score of 0.802 compared to the base model with a score of 0.534. The author interpreted 

that the reason for the good clustering results of the proposed model was that the bridge 

information in the graph data was linked to the inspection and maintenance project information. 

 

Figure 3:   Data Points of Cluster in Two-dimensional Space 

: (a) Base Model using Relational Database, (b) Proposed Model using Graph Database 
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4.2 Evaluation of the Clustering Results with Historical Maintenance Records 

The main purpose of this research was to cluster the similar bridges to allocate the limited 

budget effectively according to their characteristics. 384 bridge data which were merged with 

their historical repair costs and the previous condition grades from inspection records were used 

for evaluation of the clustering results. The authors summarized the average unit cost for 

maintenance work in each bridge in the cluster, as shown in Table 3 and Figure 4. Unit cost 

meant the total deck bridge repair cost divided by the size. In order to confirm the difference in 

characteristics except for the size of the bridge, unit cost values were compared. 

Table 3: Average Unit Cost (𝑈𝑛𝑖𝑡: ₩1,000/𝑚2) by Condition Grade of Bridge Deck in each Cluster. 

Condition 

grade from 

previous 

inspection  

Not clustered: 

(a) in Fig. 4 
(Data count) 

Base model: (b) in Fig. 4 Proposed model: (c) in Fig. 4 

Cluster 0 
(Data count) 

Cluster 1 
(Data count) 

Cluster 2 
(Data count) 

Cluster 0 
(Data count) 

Cluster 1 
(Data count) 

Cluster 2 
(Data count) 

A  15.77 (11) 0.74 (4) - 24.35 (7) - 20.18 (6) 10.47 (5) 

B 18.39 (200) 18.12 (93) 12.29 (2) 18.75 (105) 12.68 (37) 21.38 (110) 16.16 (53) 

C 43.84 (151) 41.12 (67) 134.75 (5) 40.40 (79) 44.18 (24) 31.15 (91) 75.71 (36) 

D 67.65 (21) 37.53 (7) - 82.70 (14) - 50.69 (12) 90.26 (9) 

E 93.37 (1) 93.37 (1) - - - 93.37 (1) - 

 

The clustering results of the proposed model were better for the following reasons. First, in all 

clusters of the proposed model, a gradually increasing trend of unit cost from ‘A (Good)’ to ‘E 

(Worst)’ condition grades was shown. However, the base model did not show a clear trend by 

condition grades. Second, the proposed model showed the differences in the unit costs of 

maintenance works between different clusters. This meant that unnecessary or insufficient cost 

distribution can be reduced by distributing appropriate maintenance costs according to the 

characteristics of each bridge. In other words, it was possible to allocate maintenance costs 

more appropriate to the bridge when the representative value by group was used as shown in 

(c) than when the average value without clustering was used as the representative value as 

shown in (a) in Figure 4. 

 

Figure 4:   Unit Cost of the Deck Maintenance Work by the Cluster:  

(a) Not Clustered, (b) Base Model, (c) Proposed Model 

In order to distinguish the representative characteristics of each cluster, the differences were 

compared by variables, as shown in Figure 5. In the case of the base model, each group did not 

show any remarkable characteristics between the clusters. However, in the proposed model, the 
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following interpretation was able to be derived. “The average period of bridge usage in ‘cluster 

1’ was less than that of ‘cluster 2’, but it had a higher traffic volume. Therefore, it can be 

inferred that the unit cost of ‘A’ and ‘B’ grade bridges in ‘cluster 1’ is higher than that of ‘cluster 

2’ because traffic control costs were higher.” This kind of knowledge can be inferred from the 

graph database and can be communicated to decision makers for efficient maintenance.  

 

Figure 5:   Comparison of between the Cluster: (a) Characteristics of the Bridge by Cluster 

from Base Model, (b) Characteristics of the Bridge by Cluster from Proposed Model 

5. Conclusion   

This study proposed a model to improve the clustering performance of bridge maintenance cost 

estimation by utilizing the graph database. The authors employed the GraphSAGE algorithm to 

embed nodes and relationships from bridge maintenance records into latent vectors. By 

clustering bridges with similar characteristics using these embedded vectors, efficient 

maintenance cost estimation could be supported. The clustering results demonstrated that the 

significance of converting a relational database into a graph database to leverage knowledge in 

bridge maintenance cost estimation. For future research, the authors will explore hierarchical 

clustering methodologies in addition to the K-means clustering methods used in this study. This 

will allow us to model the hierarchical structural information present in bridge maintenance 

data. Furthermore, the authors plan to improve maintenance cost estimation by integrating 

unstructured data, such as bridge inspection reports. The inclusion of such detailed information 

from disparate data sources will support informed decision-making in practice, enhancing the 

efficiency and safety of bridge maintenance.  
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