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Abstract. Using synthetic data alongside real data is a powerful technique for enhancing the 
performance of machine learning models. To this end, a new tool based on the NVIDIA Omniverse 
platform has been developed to generate synthetic data that closely mimics real-world examples. 
The use of synthetic data can mitigate problems such as class imbalance and data sparsity, and help 
prevent overfitting to the training set. By creating additional data points that resemble 
underrepresented classes, synthetic data can balance the data distribution and reduce differences 
between classes, resulting in better generalization performance and more accurate predictions on 
unseen data. In general, incorporating synthetic data into the training process can significantly 
improve the performance and robustness of machine learning models, especially when working with 
complex real-world datasets. 

1. Introduction 
In many computer vision applications, deep learning-based approaches have surpassed the use 
of traditional image processing procedures. However, nowadays most models available for 
these tasks require large amounts of data for training. The acquisition of data and their 
corresponding annotations is both time and cost consuming, especially for those specific cases 
where public datasets availability is limited. When deciding for a dataset to be used during 
training, its usefulness can be affected by the imbalance of classes, classes mismatch, or the 
lack of resemblance in the images’ attributes to the target domain of the case study. In such 
cases where popular public datasets cannot be used, computer generated synthetic images can 
partially or totally reduce the need for real images capture and annotation. 
Synthetic image generation is a technique that creates realistic images from computer graphics, 
using the images rendered from assets such as 3D models, textures, lighting, and camera 
parameters. Generating synthetic images that are indistinguishable from real ones is challenging 
and requires careful design and evaluation of the graphic engine and the rendering pipeline. An 
important advantage of this approach to obtain realistic images is counting with the possibility 
of generating pixel-perfect annotations as well for all the dataset without human intervention 
(Nikolenko, 2019). Furthermore, some of the most typical annotations such as semantic and 
instance segmentation, 2D and 3D bounding boxes, or depth and normal maps, can be directly 
extracted from the arbitrary output variables (AOV) that the rendering pipeline uses to combine 
additional information per pixel into the final image. The use of AOV therefore makes the 
processing overhead not to significantly increase, making the cost of the annotation to be 
computationally cheap. 
Since a perfect graphic recreation of the real scene of interest is limited both technically and by 
the availability of high-quality assets, domain adaptation helps to align the disparity between 
domains such that a computer vision model trained with non-ideal source domain data can be 
generalized to perform its task in a target domain of interest (Farahani et al., 2021). However, 
this approach is limited by the availability of samples from a target domain, therefore reducing 
the immediate applicability of generated synthetic data for training. 
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In this work, a solution based on the NVIDIA Omniverse platform and Pixar’s Universal Scene 
Description (USD) is proposed to ease the acquisition process and require a lesser amount of 
data. This methodology aims to easily and directly generate annotated photorealistic synthetic 
data intended to train Multiple Object Tracking (MOT) models for road environments. 
Generated data is also used in combination of real data for fine-tuning to assess the validity of 
synthetic images both as the sole source and as a pretraining source. The synthetic data 
generator is built and validated in a scenario of road traffic monitoring from a drone, due to the 
lack of public datasets with similar enough features. 

2. Related Work 
Synthetic data generation of images is a rising trend in computer vision due to a variety of key 
features. For instance, allows for the generation of images in large quantities and with high 
diversity, while keeping the data tailored to specific tasks and scenarios. In addition, the 
produced images can be accurate visualizations of scenes with complex and realistic physics, 
lighting, occlusion, and noise, which can enhance the robustness and accuracy of models. 
A direct approach to take advantage of computer-generated images is using existent interactive 
software with visually similar scenes to the domain of interest in a case study. Such is the case 
of the GTA5 dataset (Richter et al., 2016), that uses a driving focused video game to capture 
data rendered with the respective AOVs to write the automatic pixel-perfect annotations. By 
capturing data visually alike the CityScapes dataset (Cordts et al., 2016) and with a compatible 
annotation format, they allow to effectively enlarge the total amount of data to use in a computer 
vision model targeting to a domain with analogous features. In a similar fashion, Sims4Action 
(Roitberg et al., 2021) employs a social simulator game to build a dataset intended to train 
models for human actions recognition. 
While the use of video games or other interactive content offer an immediate data extraction 
provided the pertinent tools, these are not always available. In many cases accessing the AOVs 
requires the modification of program files or use of graphics debugging tools. Moreover, the 
obtainable data is usually somewhat limited by the original creators’ intention, not proving 
useful for broader applications and being subject to legal issues for the use of their assets 
without license. Free to use graphic engines like Unity or Unreal Engine offer however a lower-
level basis over which developers can build their own environments without being subject to 
the aforementioned restrictions of a final commercial application. The SYNTHIA dataset (Ros 
et al., 2016) is composed by renders of city landscapes captured from Unity with their 
annotations. 
With game engines not being originally aimed for synthetic data generation and in some cases 
being source closed, creation of annotation data would require writing custom shaders instead 
of taking advantage of the non-accessible AOVs. Solutions in the form of plugins like the 
NVIDIA Deep learning Dataset Synthesizer (NDDS) (To et al., 2018) for Unreal Engine 4 ease 
the task of retrieving annotations and frames from the renderer under specific user directives in 
the environment. More recently, Unity Technologies released Unity Perception (Borkman et 
al., 2021) for performing similar functions, claiming to be able to achieve better accuracy with 
the combination of synthetic and real data than using only the later. 
Synthetic datasets have served as well to evaluate new techniques for adversarial domain 
adaptation. For instance, GTA5 and SYNTHIA has been used to validate CyCADA (Hoffman 
et al., 2018), that performs cycle-consistent domain adaptations using generative adversarial 
networks. 
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In the later years, NVIDIA released their new Omniverse software, a collaborative platform 
leveraged by Pixar’s USD (Miller et al., 2022) as the primary and extensible data interchange 
format capable of storing and authoring data containing geometries, materials, physics, and 
behaviors among others. USD objects can as well define variant sets to specify different 
attribute variations on the same object type, instancing in memory only once the common 
elements needed to render the scene. These features, in addition to the NVIDIA Omniverse 
Replicator tool to ease synthetic data generation (SDG), have been used to promote the platform 
as a new standard for SDG. 
This work will use the newer NVIDIA Omniverse platform to build an Omniverse extension 
where the user can parametrize the most common properties and generate annotated synthetic 
data with little effort. The quality of the generated data will be validated with a YOLOv8 
detection model using real life images of live traffic captured from a UAV. 

3. Methodology 
The development of this work will follow the design and implementation of an Omniverse 
extension capable of generating general purpose datasets with specified 3D assets. It will be 
used to parametrize the dataset employed to validate the proposed approach in a visual detection 
task. 

3.1 Omniverse Extension 
NVIDIA Omniverse is a modular computer graphics oriented platform with emphasis on 
collaborative workflows for creative and industrial applications. One of the core components 
of the provided toolset is the Replicator SDK, which provides functionality for easily scripting 
the generation of physically accurate 3D synthetic data already annotated for training and 
testing AI perception models. Replicator can be used to create synthetic data for various 
perception tasks, such as object detection, segmentation, pose estimation, and depth estimation. 
To facilitate the creation of custom datasets without the need to write code, in this work is 
presented an extension for Omniverse that allows the user to interact with Replicator with a UI 
as shown in Figure 1. 
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Figure 1: General settings of the Omniverse extension 

The displayed extension allows to modify camera attributes, define posing values for objects to 
be instantiated and define paths to look for the assets to be used with online generated semantic 
data. It also includes extra functionality to support storing and loading experiments parameters, 
as well as converting between annotation formats. While by default Replicator stores 
annotations as Python dictionaries with references to NumPy objects, this extension 
accommodates the format conversion to other popular data layouts as the one used by YOLO. 

3.2 Dataset Parametrization 
For comparability with real data, the synthetic dataset was parametrized to resemble as closely 
as possible to a generalized version of a current real dataset being captured with images from a 
UAV with large focal lens cameras flying over 50 meters above a live traffic area and looking 
at further 450 meters. These images were taken with a DJI Matrice 300 RTK and a Zenmuse 
H20 camera to be later annotated with the first 8 classes of the COCO dataset, namely being: 
person, bicycle, car, motorcycle, airplane, bus, train, and truck. 
To optimize different environments loading and facilitate acquisition, HDR skyboxes are used 
instead of actual environment models, with farthest vehicles being rendered as smaller objects 
compared to the scene, but effectively providing small screen space scales suitable for the AI 
training. Figure 2 shows an example of the generated dataset with segmentation and bounding 
box annotations. 
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Figure 2: Example of automatically generated annotations from AOVs 

3.3 Detection AI Training 
To assess the quality of the synthetic dataset for training purposes, training experiments have 
been conducted on non-pretrained models and validated on a split of the same target domain 
with the following considerations: 

• Using just a smaller training split of the real dataset with 98 images for training. 

• Using the full real dataset with 980 images. 

• Using 1000 images of the synthetic dataset, fine-tuned with the previous 98 real images. 
The carried-out tests involve the analysis of Precision-Recall curves for each one of the 
independent classes and their average to identify the contribution of synthetic data on the final 
model. This evaluation requires a small dataset with annotated real data as well as a more 
extensive synthetic dataset built with the described tool, parametrizing it to achieve the 
generation of images alike the target domain where the tests will be carried out. 

4. Results 
The aforementioned criteria for running training experiments were applied beginning with the 
training of just 10% of the full real dataset, consisting of 98 images. Figure 3 shows the 
Precision-Recall curve for the validation of this training, displaying the average precision per 
class, as well as the mean for all of them. 
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Figure 3: Precision-Recall curve when training with few real data (98 images) 
A highlightable insight into the individual class’s curves is the large variance among cars and 
other types of vehicles. This is due to the fact that the presence of cars in the real dataset is 
predominant among all types of vehicles, with motorcycles being far less abundant on highways 
and also harder to detect by their smaller size. 
As could be expected, since the initial experiment ran on too few images, increasing the training 
dataset to cover all the captured 980 images leads to a vast increase in the model performance 
as shown in Figure 4. It is important to note that the mean average precision is heavily affected 
by the inability of the model to detect motorcycle when they are present in the image. 

 

Figure 4: Precision-Recall curve when training with all real data (980 images) 
Afterwards, the model was once again trained from scratch just with synthetic data. Even if the 
generated images are more consistent with inter-class variance, the lack of resemblance to the 
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target domain in comparison to the real data heavily penalizes the quality of the model. Hence, 
the more extended approaches consist of: 

• Either improve the quality of the dataset by using better assets and composition, or 
implementing domain adaptation, requiring real samples from the target domain. 

• Or using some real samples to fine-tune the model. 
After using the small 98 images split from the real dataset, the results depicted in Figure 5 were 
obtained. 

 

Figure 5: Precision-Recall curve when training with synthetic data (1000 images) and fine-
tuned with few real data (98 images) 

As can be seen, leveraging the availability of few real data samples with synthetic data helped 
in this experiment to raise the mean average precision, as well as reducing the inter-class 
variance by being able to detect the originally more complicated motorcycle class. 

5. Conclusions 
This work presented a methodology to create and validate synthetic datasets on real scenarios, 
as well as putting on focus the improvement that a similar approach can suppose when the 
availability of real data is limited. 
The tool for creating synthetic data was implemented in the NVIDIA Omniverse platform as a 
new extension that will be available both in its current form to integrate in Omniverse 
applications, as well as in the form of a standalone app running on the same platform. 
It was assessed the importance of disposing of high-quality assets in substitution of more real 
annotated images, or well being able to conduct domain adaptation. Regarding virtual scenes 
composition, it is proven that even when disposing of few real data, being able to equalize 
different classes’ objects instantiation help to reduce the average precision inter-class variance. 
Future lines of work will focus on the public availability of the tool with improvements on its 
design and the integration of domain adaptation techniques similar to CyCADA to help build 
and compare new synthetic datasets. 
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