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Abstract. This paper presents results from the ReconTOP research project focusing on a 2D space 
partitioning approach. It shows the space partitioning approach, the extraction of topological graph 
data and an evaluation process using given room polygons from 33 space layouts of apartment 
buildings. The objectives are threefold. First, we test the robustness of a 2D space partitioning 
algorithm. Second, we show how graphs describing the topology can be extracted from such a 
partition without requiring extensive geometric calculations. Third, we analyze the structure of space 
connectivity graphs and identify space properties that may be used as features in developing machine 
learning-based prediction models, e.g., for automated space classification. 
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1. Introduction 

The research presented in this paper starts with room polygons. Room polygons are either 
created by users in BIM authoring systems or may result from point cloud processing. They are 
used for various tasks in architecture, engineering, and construction. Examples are floor area 
measurement, evacuation path analysis, energy analysis, or space classification. However, room 
polygons often cannot be used directly to execute these tasks. Instead, they need to be processed 
beforehand. Accessibility graphs are, for instance, required in evacuation analysis. Similarly, 
neighboring relations are used in energy analysis. For some applications, a decomposition of 
rooms is advantageous or even necessary. All these graphs and decompositions are topological 
information. 

The objective of the collaborative research ReconTOP conducted by the authors is to create a 
data processing pipeline that can classify room functions using room polyhedra derived from 
point clouds. The final step in the pipeline involves utilizing machine learning models to 
identify room functions for floor area measurement and evacuation path analysis. However, a 
significant challenge that needs to be addressed is the extraction of relevant features from room 
polygons to train the machine learning models. This paper focuses on extracting topological 
features from room polygons based on a space partitioning approach. The research is restricted 
to residential buildings. The boundary of all room volumes and polygons are assumed to be 
planar and linear, respectively. 

2. Related Research 

Space partitioning is an alternative approach compared to traditional geometric modeling. It is 
an existing approach (Mäntylä, 1988), but it has not been investigated in detail for applications 
in the AEC sector. Space partitioning is a decomposition of space into disjoint subsets. The 
union of all subsets is the entire space. It can be implemented in such a way that neighboring 
relations are stored explicitly so that navigation does not require extensive geometric 



calculations. The topology is stored explicitly and can be extracted without geometric 
calculations. 

The computation of the sign of a determinant is a crucial primitive operation in geometric 
algorithms for location tests. Although Yap (1994) states that rounding errors in arithmetic 
operations may generally not be problematic, the build-up of errors may be concerning. 
However, for topological statements of geometric solids, a round-off error may lead to false 
topological statements.  

Romanschek et al. (2020) address this problem with the usage of integer coordinates. Their 
approach addresses the identification of space boundaries from point clouds and the topological 
evaluation. Gabler and Huhnt (2022) make use of this two-dimensional approach in a modified 
version for the identification of possible building elements from point cloud data. The 
modification is necessary to transfer the algorithm to the three-dimensional space as shown by 
Hu et al. (2020) and Vetter and Huhnt (2021). 

In the indoor environment, route planning is a common use case. In respect of movable and 
immovable objects, space subdivision may be purposeful. Zlatanova et al. (2014) present an 
overview of 2D, 2.5D, and 3D approaches. Approaches are classified in no, partial or complete 
space subdivision to support path-finding algorithms. Lamarche and Donikian (2004) present a 
series of algorithms for the detection of bottlenecks, such as narrow passages, for path planning. 

Other application areas making use of a space subdivision may be the identification of space 
utilization. For example, large, multi-functional residential spaces may need to be subdivided 
into multiple functional subspaces for living, eating, sleeping, or circulation for accurate floor 
area calculations (Suter, 2022). This is the proposed approach presented in this paper. 

3. Input Data 

For the 2-dimensional approach presented in this paper, a set of room polygons is expected as 
input. In this section general requirements for the input data are discussed. Second, the 
evaluated dataset is presented. 

3.1 Requirements for the Input Data 

The expected input data for our approach are room boundaries. The footprint of a room is 
modeled as a planar polygon. The boundary is a closed polygonal chain in the Euclidean plane. 
Besides the requirements of being closed and planar, polygonal chains must neither be self-
intersecting nor self-touching. Polygonal chains oriented counter-clockwise are noted as 
positively oriented. The area left of the oriented edge is the corresponding face. Edges separate 
faces. However, faces may have holes. The polygonal chain of a hole-polygon is oriented 
clockwise and noted as negatively oriented. Therefore, a face with a hole consists of two 
polygonal chains. 

3.2 Input Data from the SFS-A68 Data Set 

We evaluated our approach using room polygons extracted from the SFS-A68 dataset, which 
was published by Ziaee and Suter (2022). This dataset contains space layouts for apartment 
buildings, ranging from one to more than five rooms per apartment. Rooms are modeled as 
BREP volumes. The footprint of each room is a closed, planar polygon. Each apartment consists 
of one or multiple polygons based on its number of rooms and the presence of holes. 



The dataset also includes information about doors and openings, which are assigned to edges 
of polygons that represent building components such as walls. Figure 1 shows the input 
polygonal chains for a chosen example of a floor of a residential building designed by Kaden 
Klingbeil Architects. The example consists of 12 polygonal chains describing 11 spaces. Two 
polygons describe a shaft inside a room with different orientations, one positive describing the 
shaft, and one negative describing the hole in the room. Figure 1 shows the input polygons. 

 

Figure 1: An example floorplan from the SFS-A68 dataset by Ziaee and Suter (2022). The top left 
isolated space is an elevator. All other ten spaces belong to an apartment unit. 

4. Space Partitioning  

In the first step, the boundaries of rooms are inserted in a space partition. The algorithm is based 
on the consideration to determine the location of points exactly. For this purpose, the 
coordinates of all points are mapped onto integer values. This part of the algorithm is equivalent 
to the approach presented by Romanschek et al. (2020).  

2-simplices, triangles, are the basis for this space partitioning.  An initial mesh of two triangles 
always forms the basis for partitioning. The two triangles share a common edge. The other four 
edges, two of each triangle, form a bounding box. All vertices of all polygons are known to be 
inside the two triangles or at the shared edge. No vertex can be at the edges of the bounding 
box.  

The union of the two initial triangles represents the space of interest. The exterior of the space 
of interest is unbounded. The space of interest is decomposed into triangles. During the entire 
process, the following concept is applied: the space of interest is the union of all triangles, and 
triangles do not overlap. 

For the insertion of a point in the mesh, exactly two conditions may apply: the point is inside a 
triangle or the point is on an edge. For the first case, the triangle will be split into three new 
triangles. The union of the three new triangles is the old triangle. For the other case, the two 
adjacent triangles of that edge will be split into four. 

Topological relations between triangles are stored explicitly throughout the whole process. A 
triangle always has exactly three neighbors, one at each edge. Exceptions are only the four 
triangles at the boundary of the space of interest which represent the unbounded exterior. 



After the insertion of all transformed vertices, the boundary edges of the polygons will be 
reconstructed. Contrary to Romanschek et al. (2020), coordinates of intersection points of 
boundary edges are not stored as rational numbers. The current algorithm makes use of local 
refinement. The coordinates of all vertices of the space of interest are stored as positive integer 
values of the data type int (32-bit). The refinement uses the class BigInteger as defined in 
(JavaTM). 

 

Figure 2: The left figure shows two input polygonal chains p1 and p2 and the resulting triangulation. 
P1 is oriented positively, p2 negatively. The right figure shows the set-theoretical evaluation and the 
configurations of this example: a room is assigned to p1 and p2, the exterior to p2, and the hole to p1. 

After the reconstruction of all input polygons, a breadth-first search is performed to identify 
contiguous areas. A contiguous area, a 2D cell, is bounded by the edges of inserted polygons. 
The result of this step is a set of 2D cells. All 2D cells are disjoint, and the union of all 2D cells 
is the partitioned space of interest. 

Besides the possibility of detecting overlapping input polygons a huge advantage of this 
approach is the detection of voids. For each 2D cell, the configuration of input polygons is 
stored. Figure 2 shows an example with a positive and a negative-oriented polygonal chain as 
input, three configurations are present: 

 1. Exterior: The 2D cell which touches the unbounded exterior is part of the exterior. 
All negative-oriented polygons are referenced in this 2D cell. All not referenced polygons are 
positive-oriented. 

 2. Face with a hole: The grey-shaded 2D cell from Figure 2 shows a configuration of 
two polygons. One of them, p2, has already been identified as a negative-oriented polygon. The 
resulting face with that configuration is a face with a hole. 

 3. Hole: A single polygon is referenced in the third configuration. The configuration 
does not refer to the negative polygon. Compare the white 2D cell in Figure 2. 

Multiple further configurations exist. The interpretation of these configurations differs in 
models with positive and negative polygons. Models with only positive polygons are simple to 
interpret: 

1. Exterior and void: no reference to a polygon 
2. Room: a single reference to a polygon 
3. Overlap: references to multiple polygons. 



5. Output Data and its Computation 

The output, different graphs describing the topology, is explained in this section. An adjacency 
and an accessibility graph are derived after an evaluation of contiguous areas in the space of 
interest, each represented by a node in the resulting graph. Each node is identified as a space of 
the building. Performing a convex decomposition splits non-convex spaces of the building into 
convex subspaces. A subspace-adjacency graph is derived. 

5.1 Finding Contiguous Areas 

After the insertion of all room polygons, closed 2D cells are found using a breadth-first search. 
Boundary edges of the inserted polygons are considered boundaries of an area. Self-intersecting 
polygons are not supported as input. However, polygons may intersect each other. The 
presented approach supports the detection of overlaps and additionally the identification of 
voids. For all identified 2D cells the configuration of the initial polygons is stored. In case an 
identified 2D cell is not linked to an input polygon, the 2D cell is identified and marked as void. 
Always present is the exterior, the unbounded space in which all polygons are inserted. 

5.2 Space Adjacency and Space Access Graph 

An adjacency graph is generated as the first result, storing the topological relations of the 
determined cells from the evaluation process. Besides the exterior, detected voids and overlaps, 
usually, each 2D cell represents a modeled space of the building. Each 2D cell is represented 
as a node in the adjacency graph. Two cells are adjacent if they share a common boundary edge. 
Adjacencies between cells are represented by undirected edges between corresponding nodes 
in the graph. 

 

Figure 3: The example floorplan with positions of space labels (circles) and positions of doors and 
openings (filled circles) on the left. The corresponding space adjacency graph is in the middle, and the 

resulting space access graph is on the right. 

Although the adjacency graph stores information about adjacent spaces of the building, no 
knowledge is contained on whether those are accessible. In the following step, the accessibility 
graph is generated. 

Doors and openings are possibilities to allow accessibility of two adjacent spaces. In this 2-
dimensional approach, only a single (mid)-point of a door or an opening is needed. The location 
at or close to an existing boundary edge is assumed. 

The mid-point of each door and each opening is transformed and inserted into the space of 
interest. Four cases are distinguished: 

1. The mid-point is located on a boundary point of two adjacent 2D cells: The adjacent 2D 
cells are connected. 



2. The mid-point is located on a boundary point of more than two 2D cells: This case 
cannot occur because openings and doors are not located at corners where several spaces 
of a building meet. 

3. The mid-point is located on a boundary edge of two adjacent 2D cells: The adjacent 2D 
cells are connected. 

4. The mid-point is located in the interior of a 2D cell: The closest boundary edge is 
determined. The two 2D cells sharing this edge are connected. 

The generation of the accessibility graph differs from the adjacency graph only in one detail: a 
common edge between two cells must contain a door or opening for the creation of a relation. 
Each cell is represented by a node. An undirected graph edge is created for each adjacent cell 
if the edge they have in common contains a door or an opening. 

5.3 The Convex Decomposition 

For non-convex 2D cells except the exterior, a convex decomposition algorithm is applied. The 
results are convex sub-cells. The algorithm, as described in Gabler and Huhnt (2022) traverses 
the boundary edges of a cell in a counter-clockwise direction. At each reflex vertex, the cell is 
split in two directions, in the positive direction of the previous edge and the negative direction 
of the next edge. Depending on the input data this algorithm may lead to a huge number of sub-
cells. However, all sub-cells are ensured to be convex. The resulting decomposition is unique. 

 

Figure 4: The mesh with the example floorplan after the convex decomposition, compare to Figure 1. 

5.4 Decomposed Adjacency Graph 

For the investigation of a room function, an adjacency graph of subspaces is derived. Rooms 
with a convex boundary will not be decomposed and are represented as a single node in the 
graph. Non-convex rooms are decomposed into multiple subspaces. Each subspace is a node in 
the corresponding graph. Adjacent subspaces are connected with edges. 

Figure 5 shows the decomposed room from Figure 2 on the left. The derived subspace adjacency 
graph is shown on the right. 



 

Figure 5: The two initial example polygons (see Figure 2) after the convex decomposition on the left. 
The corresponding adjacency graph for the subspaces on the right. 

For the chosen example from the SFSA68 dataset, the resulting graph is shown in Figure 6. Of 
the 11 input spaces, six are convex and therefore not decomposed. They are isolated nodes in 
the corresponding graph. Three spaces have one reflex vertex each, leading to a decomposition 
into three subspaces each. Two non-convex spaces with multiple reflex vertices are contained. 
The convex decomposition leads to 7 and 24 subspaces for them. 

 

Figure 6: The resulting subspace adjacency graph for the presented example. The corresponding 
decomposition is shown in Figure 4. 

5.5 Discussion 

The presented space partitioning algorithm is capable of handling various types of models. It is 
not restricted to the Manhattan assumption. Exterior, rooms, voids, and any kind of overlap are 
identified based on the set-theoretical evaluation. By applying a convex decomposition, the 
algorithm ensures a unique partitioning and provides additional partitions for identified rooms. 
Adjacency and accessibility graphs can be efficiently extracted by comparing references. 

The results demonstrate the effectiveness of space partitioning in this field, as subsequent 
evaluations do not rely on geometric algorithms, eliminating the possibility of round-off or 
truncation errors commonly associated with floating point numbers used in computers. 

6. Data Analysis 

We process space and subspace adjacency graphs with graph algorithms to extract graph-based 
space features. In follow-up work, we plan to use these features to develop space function 



classifiers using machine learning methods. Graph-based features may be complementing 
existing space geometry and quantity features. Examples of the latter include floor area, space 
volume, or the number of doors, windows, or openings in a space (Bloch and Sacks, 2018; 
Buruz et al., 2022). We estimate the relevance of a graph-based feature by analyzing 
correlations between the space floor area property and the other graph-based features. 

6.1 Measures 

Node and graph measures that are used in the analysis are defined in Table 1. The measures are 
widely used in graph and network analysis (Newman 2010). They are computed using the 
NetworkX library (Hagberg, Schult, and Swart, 2011). Node measures include degree and 
selected centrality measures. Cluster measures are beyond the scope of this work. Similarly, a 
set of basic graph measures are selected. 

Node measures are computed for each node in the space adjacency graph. A subspace adjacency 
graph typically consists of multiple components, where each component corresponds to a space. 
Thus, graph measures are computed separately for each such component. 

Table 1. Graph measures (Hagberg, Schult, and Swart, 2011). 

 

Measure Node-level measures 

Degree Number of edges incident on a node. 

Degree centrality Fraction of nodes in a graph that are connected to a node. 

Closeness 
Reciprocal of the average shortest path distance from a node to all reachable 
nodes over the number of all reachable nodes. 

Betweenness Number of shortest paths between other node pairs that pass through a node. 

Eigenvector The centrality of a node depends on the centrality of its adjacent nodes. 

Pagerank The centrality of a node depends on the structure of incoming edges. 

Measure Graph-level measures 

Cycle count Number of basis cycles. 

Diameter Length of the shortest path between the most distanced nodes. 

Avg. shortest path length The average length of the shortest paths between all node pairs. 

 

6.2 Results 

Figure 8 shows squares of Pearson correlation coefficients (r2) for space floor ‘Area’ property 
and graph measures in space adjacency and subspace adjacency graphs, respectively. The space 
count is higher in Figure 8 (a) than in Figure 8 (b) because the former includes loggias and 
access balconies. 

 

 



(a) Space ‘Area’ property and node-level 
measures in the space adjacency graph (n=729 

space nodes) 

(b) Space ‘Area’ property and graph-level 
measures in subspace adjacency graph 
components (n=689 space components) 

 

Figure 7: Squares of Pearson correlation coefficients (r2) between the space ‘Area’ property and graph 
measures in the (a) space adjacency graph and (b) subspace adjacency graph. 

6.3 Discussion 

Correlations between the ‘Area’ property and graph measures are generally weak for space 
adjacency as well as subspace adjacency graphs (max r2=0.5). On the other hand, correlations 
between graph measures vary significantly in both graphs. For example, ‘Closeness’ and 
‘Betweenness’ measures are weakly correlated (r2=0.26) in the space adjacency graph. By 
contrast, the lowest correlation between graph measures exists between ‘Cycle count’ and 
‘Average path length’ measures in the subspace adjacency graph, but it is rather strong 
(r2=0.77). Alternatively, the correlation between ‘Diameter’ and ‘Average shortest path’ length 
is weaker (r2=0.55) but the former correlates more strongly with ‘Area’ than ‘Cycle 
count’ (r2=0.50 and r2=0.28, respectively). 

In summary, we conclude that graph measures generally appear to complement the ‘Area’ 
property well due to low correlation. More specifically, ‘Closeness’, ‘Betweenness’, and ‘Cycle 
count’ measures seem particularly well-suited for use as features in machine learning 
applications. Further studies are needed to assess if these observations also hold for other 
geometric space properties, such as the floor polygon perimeter property. 

7. Conclusions and Outlook 

The results show that the overall goal of our common research in establishing an automated 
chain from room polygons to functional space classification is reachable. The presented 2-
dimensional approach focuses on floor plans modeled by users. Further investigations are 
required in almost every individual task in the addressed chain. We want to establish the chain 
starting with point clouds, computing polyhedrons from these point clouds, reconstructing the 
topology in 3D, extracting features from this topology, and using these features for space 
classification based on artificial intelligence. 

The upcoming next step in the determination of topological relations is the transfer to the 3-
dimensional space using a tetrahedral mesh. In a concurrent ongoing effort, we are including 
extracted node features from the space adjacency graph to develop machine learning-based 
space classification models for residential buildings. A challenge that needs to be addressed in 
future work concerns the improved exchange of geometry and topology data generated by the 



space partitioning algorithm and client applications in the data processing pipeline, including 
space classifiers. 
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