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Abstract. Reducing urban energy consumption is critical to achieving the 2050 Net Zero Emission 

Goal. In the past fewer years, researchers and experts have focused on improving energy efficiency; 

however, not only does the building energy efficiency affect energy consumption, but the urban 

scale factors also play an essential role in it, like the urban heat island effect. To predict urban 
electricity consumption, many researchers use different urban planning parameters such as road 

width, green belt, building parameters such as building use type, and other public parameters for 

analysis, but the calculation and statistical steps require a lot of manpower, in addition, many 

researchers use some confidential parameters in the research such as single-user power data, which 

involve privacy issues and are difficult to obtain in different cities or countries, causing their results 

are limited in a specific area. Using computer vision and deep learning, this research can quickly 

and effectively identify and calculate 10 urban and building characteristic parameters such as urban 

green ratio, average road width, window ratio, and building height from aerial images. The above 

characteristic parameters are combined with the government's public information that can be 

obtained on the Internet. This research uses regression analysis to quickly predict urban power 

consumption, which can be used for analysis in different cities. In advance, it can provide an 

objective prediction result to government offices while making an urban (renewal) plan. 

1. Introduction 

Reducing urban energy consumption is critical to achieving the 2050 Net Zero Emission 
(International Energy Agency, 2021). Recent studies have significantly improved energy 

efficiency through simulation for interior spaces. However, on a larger scale, such as city blocks 

or districts, other factors, for example, building form and facade system, also play an essential 

role in the urban heat island effect (UHI) (Ma et al., 2020). To estimate the UHI effect and 

electricity consumption, many researchers use urban planning parameters such as road width, 

green belt, building parameters such as building type, and other general metrics for analysis. 

Nevertheless, the prediction model is complicated to understand, and the recent deep learning 

model's reasoning is behind the black box. Moreover, many parameters are closed to the public, 

making most approaches hard to scale and limited to certain areas. 

This research aims to develop a method that quickly and effectively detects and calculates urban 

and building parameters affecting energy consumption and the UHI effect. These parameters 

are combined with the public information obtained on the internet to simulate and predict 

energy consumption and the UHI effect. This research uses regression analysis to predict urban 

power consumption and further simulates the UHI, which can be used for analysis in different 

cities. Furthermore, it can provide an objective prediction result to government offices while 

making an urban (renewal) plan. 

2. Related Research 

UHI effect is critical to the urban energy consumption. Urban heat island (UHI) can have 

significant impacts on building energy consumption by increasing space cooling demand and 
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decreasing space heating demand. However, the impacts of UHI on building energy 

consumption were understudied due to challenges associated with quantifying UHI-induced 

temperature change and evaluating building energy consumption. The correlations between the 

urban island effect and distinct urban attributes exist. The heating load indexes of the buildings 

located in downtown are 1.5-5% less than those in the suburbs. (Li et al., 2019) As the heat 

island intensity raises by 1℃, the average heating energy consumption will decrease 

5.04%.(Zhou et al., 2017) Urban heat island effect increases energy consumption of buildings 

by increasing space cooling demand and decreasing space heating demand. Urban heat island 

effect can be evaluated by using remote sensing data to measure surface temperatures and 

impervious surface area, or using a holistic evaluation methodology that takes into account 

factors such as land use, vegetation cover, and building density (Deilami, Kamruzzaman and 

Liu, 2018). Other study also takes the floor area ratio into consideration (Zhou et al., 2017). 

Data-driven energy analysis can work on urban energy analysis and prediction. Many energy 

analysis studies started by modeling and characterizing the building performance through 

developing simulation-based and data-driven methods. In recent years, simulation-based 

techniques usually use commercial software such as EnergyPlus (Crawley et al., 2001), 

eQUEST, etc. with manual adjustment and input of building energy model data, like material 

type, air condition, amount of lighting, to quantify and predict building energy performance 

from various energy conservation measures (ECMs). Urban and building energy simulation 

required plenty effort on variables collection (Chen, Han and de Vries, 2020). Some studies 

pointed out the task of creating a reliable building energy model of a new or existing 

neighborhood can be broken into the following subtasks: simulation input organization (data 

input), thermal model generation and execution (thermal modeling) as well as result validation 

(validation) (Reinhart and Cerezo Davila, 2016). On the other hand, data-driven energy analysis 

is a method of analyzing energy data using statistical and machine learning techniques to 

identify patterns and trends in energy consumption. It is used to optimize energy use and reduce 

costs by identifying areas where energy can be saved. It is also used to predict future energy 

consumption and to identify areas where new sources of energy can be developed (Amasyali 

and El-Gohary, 2018; Lin, Zhang and Zuo, 2022). 

Street view and aerial images can help to extract building features. In recent years, due to the 

rapid development of computer vision technology, related studies have been tried to obtain the 

characteristics of residential buildings through the use of high -altitude photos, and used for 

energy analysis. A study use the overhead image and regression model to estimating resdential 

building energy consumption (Streltsov et al., 2020). Also, some researchers us aerial and street 

view image to predict residential building (Rosenfelder et al., 2021). These studies use street 

view and aerial images to classify building type (residential or commercial), and extract features 

(e.g. area, perimeter, building density, pool size, number of stories, vegetation) to regress and 

predict the energy usage. However, these studies mainly are all focused on individual residential 

building’s energy prediction without considering their surroundings, or choose countryside or 

suburban as their experiment field. One report suggests that building energy consumption is not 

only related to the systems and people in it, but also interact with exterior systems like the street, 

tree, other building (‘using satellite images, scholars develop a model to quantify buildings’ 

energy use.pdf’, no date). this research will use street view and serial images to extract both 

building and urban features, and use regression method to analyze and predict energy 

consumption. 
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3. Methodology 

This study uses computer vision technology to analyze street view and aerial images to establish 

relationships between them. A dataset is created from Manhattan Island in New York City, 

USA, which contains a total of 39 blocks with 2D building elevation views reconstructed in this 

study. 

This study presents a framework for automated prediction of electricity consumption from city-

scale aerial images and 3D models. The work of establishing this framework in this research 

could be divided into four phases: data collection, deep learning-based image segmentation 

model, segmentation data post-processing, and data-driven regression model. Figure 1 

demonstrates the flowchart of the whole procedure of this framework. 

In the first phase of this research, we sought data that could be quickly accessed and had enough 

characteristics to represent a city’s energy consumption. To predict electricity consumption, we 

chose aerial images and 3D building models as the beginning data. Aerial images were mainly 

used to identify the city’s composition so that we could know the surrounding situation of each 

building. On the other hand, 3D building models were more likely to present visual features of 

buildings themselves. We specifically extracted orthographic façade images from 3D models 

using an automated procedure. We chose these two sources of data because they both obtain a 

large amount of potential information to develop and their massive scale is very easy to obtain 

due to advanced development of photogrammetry technology nowadays.  

The second phase of this research involves building a deep learning-based image segmentation 

model. As shown in the flowchart, we developed two different semantic segmentation models 

to deal with our data from two sources: aerial images and orthographic images extracted from 

3D building models. The main reason for using deep learning models here is to automate the 

process of identifying the features we want from our image data. Aerial images are used to 

identify the composition of the city (around the buildings), so we use a semantic segmentation 

model to identify buildings, roads, and green areas in a large scope from an aerial view. 

In this research, we used a semantic segmentation model to identify every window on the 

building façade from orthographic façade images extracted from 3D building models. The 

façade image is about the appearance of the building, and we are especially interested in the 

window rate of the building. 

In the third phase of this research, segmentation data post-processing played a character of 

bridge to connect the segmentation models to the regression model ultimately. Overall, we did 

some summarization and extraction to segmentation data generated from two deep learning 

models, then created a list of critical parameters we needed to build the regression model. 

In the fourth phase, we built a data-driven regression model to predict our target: electricity 

consumption. Combining parameters of building and its surrounding, like building area, green 

ratio, road with …and so on, then we can do regression analysis with the energy consumption 

data. 
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Figure 1. Flowchart of working framework. 

3.1 Data Collection 

Aerial Image. In this study, we selected Manhattan’s financial district as the demonstration area, 

which is the core area of the city and mainly contains residential, office, skyscraper, landmarks, 

and so on. First, we used orthographic aerial images as one of the main data sources. The 

orthographic aerial images were generally generated from camera drones over the city and 

finished after orthorectification. This kind of image data has a great advantage in resolution 

compared with the satellite aerial images usually used before. The data used in this study were 

obtained from open-source maps on the Internet. The raw image could be downloaded by 19200 

x 19200 resolution per image in PNG format. We captured the area of Manhattan’s financial 

district, with a range about 1 kilometer by 1 kilometer, and the resolution is 0.011 square meter 

per pixel. The aerial images from many different open-source maps are convenient for anyone 

to access and utilize quickly. However, unlike satellite images, aerial images cannot be 

generated once in such a big scope. Therefore, the map would be divided into many parts with 

different time and light conditions, which make an obvious sense of stitching in the overall 

view. Figure 2a and Figure 2b show the approximate scope and demonstrate the level of 

resolution of the data. 

3D Building Model. The 3D building model used here is to collect all the potential parameters 

that can represent energy consumption in building appearance information. The 3D building 

appearance model of most cities is also accessible in many online maps now. We use Blend 

API to transform the models into 3D mesh in Blender (Blender Development Team, 2022), then 
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split them into individual buildings. Since we want to use image recognition to extract 

characteristics from the model, we developed an automated script in Blender to generate four-

direction orthographic façade images and top-view images for subsequent usage. The resolution 

of each image generated here adopts 2160 x 2160 pixels to ensure the minimization of the loss 

from conversion. Figure 3a shows the view of the 3D mesh model in Blender, and Figure 3b is 

one generated orthographic façade image.  

 

    

Figure 2a. Aerial image of specific area and Figure 2b. Larger scale aerial image 

      

     Figure 3a. Building Mesh Model and Figure 3b. Orthographic façade   

3.2 Deep Learning.  

Aerial Image Segmentation. We built a deep learning-based semantic segmentation model to 

extract characteristics by recognizing city composition through aerial images. For this model,  

we used the structure of MMSegmenation (MMSegmentation Contributors, 2020), which is 

based on PyTorch (Zhu et al., 2019) and is a semantic segmentation library of OpenMMLab 

(Contributors, M. M. C. V., 2018). Pre-trained weights and configs of PSPNet (Zhao et al., 

2017) trained with iSAID dataset (Zamir et al., 2019) were utilized in this model for initial 

setup. 

To train the model, many famous aerial image datasets were tried to use in the beginning, but 

they didn’t show good enough performances for most datasets consisting of satellite images. 

Some of the other datasets closer to our data miss the class, vegetation, we are particularly 
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interested in. Ultimately, the model was trained with data we annotated on the same map aerial 

image ourselves. 

The training data was annotated in the online annotation tool, Supervisely, and segmented into 

four classes: Building, street, vegetation, and all others. Each image annotated here has a 

resolution of 2400 x 2400 pixels, and a total of 64 images were annotated. 

About the training result, Figure 1 presents the evaluations of each class and the whole model. 

Using IoU and accuracy for classes separately; Overall accuracy, mean IoU, and mean accuracy 

were adopted for evaluating overall model. Figure 4 demonstrates the prediction of trained 

segmentation model. 

Based on the three main classes extracted, we can generate the parameters we need in later 

regression models. 

     Table 1. Evaluation indicators of aerial image model  

Evaluation indicators 

Indicators for classes Indicators for whole model 

class IoU Acc aAcc mIoU mAcc 

Other 75.35 89.32 87.26 74.43 83.98 

Road 76.22 85.03    

Vegetation 61.49 72.03    

Building 84.67 89.54    

 

Figure 4. Segmentation and original aerial image 

Orthographic Façade Image Segmentation. Previously, an orthographic façade image was 

generated from a 3D mesh model. We are concerned with the energy performance of building 

façades and specifically with the window ratio. Similar to the aerial image model, we used the 

same structure of semantic segmentation model to calculate windows area. A Mask R-CNN 

(He et al., 2020) model was tried in the early phase to recognize windows, but in the end, a 

semantic segmentation model did a more precise job in calculating windows area. 

Pre-trained weights and configs of PSPNet (Zhu et al., 2019) trained with Cityscapes dataset 

(Cordts et al., 2016) were utilized in this model for initial setup. The training dataset was also 
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annotated by ourselves. Most previous façade image datasets are limited to residential houses, 

but there are skyscrapers and glassy towers in Manhattan where glass curtain walls are not 

recognized well by models trained on those datasets. In the end, our training dataset consisted 

of 156 façade images annotating windows. 

Since other characteristics would be obtained using computer vision methods, windows are the 

only class we focus on in the segmentation model. Table 2 shows evaluations of each class and 

the whole model using IoU and accuracy; overall accuracy, mean IoU and mean accuracy were 

also used for evaluation here. Figure 5 is one of the prediction results. 

So far, we have built a window recognizing model for façade images and a city composition 

segmentation model for aerial images. 

Table 2. Evaluation indicators of façade image model.  

Evaluation indicators 

Indicators for classes Indicators for whole model 

class IoU Acc aAcc mIoU mAcc 

Background 93.64 95.47 94.22 77.55 89.78 
Window 61.47 84.09    

 

 

Figure 5. Predicting and original façade image 

3.3 Segmentation Data Post-processing and Regression Analysis 

For the later step, using NYC energy performance map data to build a regression model, the 

demonstration area has been divided into 19 subdivisions, each with several buildings. The 

results of two segmentation models are applied here for the computational transformation into 

parameters. Building ratio, green ratio, road ratio, window ratio …and so on, simple computer 

vision algorithms are used to complete the generation of parameters. 

After obtaining the characteristics of urban buildings by the method mentioned above, this study 

also obtained the city's public electricity consumption (EUI, energy use intensity) and building 

types, and other public information from the Internet in regression analysis. 

In the regression model, we set EUI as a dependent variable, windows ratio as an independent 

variable, and control variables include gross area, green ratio, and road ratio. We expect the 



8 

 

result to support the following hypothesis: EUI increases while the window ratio increases. The 

results are Table 3.  

 Table 3. Regression result (R-squared is 0.05) 

Log(EUI)=C(1)+C(2)*Window ratio+C(3)*Log(gross area)+C(4)*(green ratio + road ratio) 

 Coefficient Std. Error t-Statistic Prob. 

C(1) 5.5496 0.5692 9.7491 0 

C(2) 0.0081 0.0054 1.4903 0.1413 

C(3) -0.0505 0.0481 -1.0514 0.2972 

C(4) 0.0059 0.0085 0.6922 0.4915 

 

The return results show that the current parameters are less than 20% of the EUI interpretation 

rate (R-Squared). The variable part shows that the rise of the window ratio will increase EUI, 

but its impact is not significant. In addition, past research believes that the increase in road 

width and green space area helps alleviate UHI, but the return result positively affects EUI. 

In the 19 regions divided in this study, there are a total of 65 buildings, classified as 27 

residential buildings, 29 office buildings, 8 hotels, and 1 school according to building type. We 

hope to understand the energy behavior of different types of buildings and their relat ionship 

with the aforementioned parameters. The regression results are as Table 4 and Table 5. 

    Table 4. Residential building regression result(R-squared is 0.11)  

Log(EUI)=C(1)+C(2)*Window ratio+C(3)*Log(gross area)+C(4)*(green ratio + road ratio) 

 Coefficient Std. Error t-Statistic Prob. 

C(1) 4.8042 0.651 7.3802 0 

C(2) -0.014 0.0083 -1.6843 0.1056 

C(3) 0.0329 0.0596 0.5517 0.5865 

C(4) 0.0073 0.0118 0.6225 0.5397 

 

Table 5. Office building regression result(R-squared is 0.12) 

Log(EUI)=C(1)+C(2)*Window ratio+C(3)*Log(gross area)+C(4)*(green ratio + road ratio) 

 Coefficient Std. Error t-Statistic Prob. 

C(1) 5.542 1.0387 5.3356 0 

C(2) 0.0115 0.0065 1.7743 0.0882 

C(3) -0.0517 0.0799 -0.6466 0.5238 

C(4) 0.0037 0.012 0.3103 0.7589 

  

In the analysis of residential buildings, we can find that when the window ratio increases, it 

will help reduce the use of power. On the contrary, the window ratio will increase power 

consumption at office buildings. The result of the two shows considerable prominences. 
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4. Conclusions and Future Work 

The thesis aims to explore the possibility of using publicly available information on the internet 

to assist in capturing the external features of urban buildings by computer vision method and to 

use regression analysis to explore the possibility of using them for urban energy prediction. 

Through our research, we have completed the identification of building features (window ratio, 

green ratio, road ratio) for 65 buildings in Manhattan, New York City, using street view and 

aerial images and combined with publicly available building energy consumption data (energy 

use intensity, building using type, gross area), we have explored the possibility of energy 

prediction. The current regression model accuracy is still low, but it does show that window 

ratio has different effects on energy use for residential and office buildings.  

This study also found that government-publicized network information was less than expected. 

For example, in terms of the window ratio identified in this study, it is difficult to obtain credible 

public information on the Internet, making it difficult to verify its correctness as a result. At the 

same time, EUI data is considered confidential information in many countries or regions, 

making obtaining correct and credible data in public areas difficult. 

Future research will focus on four directions: 

1. Improve aerial and orthographic façade image segmentation, and recognize the building 

height for further regression. 

2. Continue to find more relevant public information can be sought to validate the 

research's identification results, increase data reliability. 

3. Expand the research scope and increase sample size to improve the reliability of the 

regression model. 

4. Will continue to seek public information from other countries, and provide suggestions 

for urban planning by comparing energy consumption between cities in different 

climatic regions. 
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