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Abstract. Intervention activities that involve cut and cover of the subsurface tend to have adverse effects 

on society and the economy. These negative impacts may include more traffic congestion, longer travel 

times, and increased noise and air pollution. To reduce the frequency of street closures for maintenance, 

repair, and rehabilitation work, a more comprehensive approach to intervention planning is necessary. 

This approach should be based on a unified classification model that assesses the conditions of various 

municipal assets (such as water and sewer pipes and pavements) at the segment level. By taking this 

holistic approach, we can minimize the negative impacts of excavation activities and reduce the need 

for future repairs and closures. This paper aims to develop three ensemble machine learning methods 

for classifying the conditions of underground municipal assets (i.e., pavement, water, and sewer pipes ) 

within a segment and to determine street closures based on the interventions required. Based on these 

conditions and heuristics specific to each asset, the method determines segment-level interventions and 

the nature of the required street closures. The models have high accuracies ranging from 82.38% to 

98.64%, and the segment-level intervention strategies have an accuracy of 79.92%. This research can 

help municipal decision-makers prioritize interventions, improve planning, and estimate the duration of 

street closures. 

1 Introduction 

A synchronized utility intervention (integrated asset management) is when the repair or renewal 

of spatially collocated assets is done simultaneously to reduce the socioeconomic impact as well 

as the cost of the intervention. This method of utility intervention introduces several challenges 

and therefore complicates the decision-making process. A major factor that determines the 

effectiveness of this mode of utility intervention is the level of coordination and data sharing 

among utility owners. In most cases, the level of coordination between municipal and private 

utility owners is inadequate (Abu-Samra et al., 2018), even for spatially collocated utility assets. 

Although synchronized interventions are not practiced in several countries, they are encouraged 

(FCM and NRC, 2003). Some examples of municipalities in Canada currently practicing 

synchronized interventions include Sudbury and Hamilton in Ontario, Montreal in Quebec, 

Kelowna, Surrey in British Columbia, etc. Other examples are Bergen and Trondheim, in Norway 

and Trelleborg, Sweden (Braun, 2012; Chacon & Normand, 2016; FCM & NRC, 2003; Hafskjold, 

2010; Hafskjold & Bertelsen, 2008). 

In the short term, a certain level of sustainability can be achieved by conducting synchronized 

integrated interventions. However, in the long term, under certain conditions (e.g., high utility 

density, traffic density, etc.), a major shift can be made toward the sustainable placement of 

underground utilities using multi-purpose utility tunnels (MUTs). MUTs offer a long-term 

alternative by hosting utilities in an underground tunnel capable of housing several utilities in 

single or multiple compartments. By so doing, utilities are less vulnerable to damage, thus, 

increasing the lifespan of the utilities hosted in the tunnel. Also, expansion, inspection, and 

maintenance of underground utilities can be executed all year round with the possibility of 

eliminating social costs (Genger et al., 2021). 

Two common methods used to determine the need for intervention are failure prediction and 

condition classification. Weeraddana et al. (2019) used a supervised machine learning algorithm 
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called random forest regression (RFR) to predict the likelihood of water mains failure, while Jafar 

et al. (2010) employed six artificial neural network (ANN) models to predict the failure of urban 

water mains. In terms of condition classification, many researchers have used binary 

classifications, such as good or bad, to classify asset conditions. However, using binary models 

may result in misclassification errors, which can increase economic losses due to prematurely 

replaced assets that were still in acceptable condition. Some researchers, such as Hernández et al. 

(2021), have classified sewer conditions into three classes (good, medium, and bad) using random 

forest and support vector machine (SVM)-based models at the asset and network levels for 

management and inspection purposes. Various combinations of features have been used to achieve 

pipe failure prediction or condition classification, and the accuracy of the machine learning models 

is dependent on the available features, as well as the ML algorithm selection, data preprocessing, 

hyperparameter tuning, and data quality. 

Some researchers focused on predicting only one indicator and then used its value to determine 

pavement condition (Abdelaziz et al., 2020; Bashar & Torres-Machi, 2021; Kirbaş & Karaşahin, 

2016; Zhou et al., 2021). Even though relationships exist between several performance indicators, 

using one indicator alone may not sufficiently capture the condition of a street segment, 

considering that different standards exist for acceptable indicator thresholds (Arhin et al., 2015). 

Previous research on the prediction or classification of the conditions of municipal assets has 

primarily focused on evaluating each asset individually. However, it is crucial to view these assets 

as interconnected systems and coordinate their interventions to minimize user costs (Genger & 

Hammad, 2022). To achieve this, it is essential to evaluate the conditions of multiple assets within 

a segment instead of solely assessing each asset independently. 

In previous studies, binary or multi-class classification models were used to assess individual 

infrastructure assets or networks in isolation. However, this research takes a different approach by 

conducting a multi-class classification of multiple assets, which are evaluated together at the 

segment level. Additionally, this research goes beyond determining segments for synchronized or 

unsynchronized interventions by proposing an alternative method, the MUT. Street segments 

requiring excavation-related interventions can be considered an opportunity to implement the 

MUT.  Using this approach establishes a method of MUT location selection that is based on the 

condition of the asset conditions and their need for interventions.  

The primary goal of this research is to forecast street closures by analyzing the combined 

conditions of municipal infrastructure assets located in the same segment. To achieve this 

objective, the research has two specific aims: (1) to create a machine learning (ML) technique for 

systematically classifying the condition of various underground municipal assets (including 

pavements, water and sewer pipes) that are spatially collocated within a segment; and (2) to employ 

a heuristic approach for determining street closures based on the synchronized or unsynchronized 

interventions at the segment level, which result from merging the interventions of individual assets 

within each segment. 

2 Proposed Method 

Figure 1 illustrates a methodology proposed to determine street closures at the segment level by 

integrating the conditions obtained from three separate ML models for each asset and then 

applying intervention strategies. The methodology begins with preparing the raw GIS data for each 

asset's failure, inspection, and network datasets, followed by executing various data preprocessing 

steps on the datasets. Next, the data is split into training/cross-validation and testing sets. The 

chosen features for each asset are then fed into their respective ML model, each of which comprises 
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a voting-based ensemble ML algorithm. To obtain the highest accuracy, hyperparameter tuning is 

carried out on each ML model. Each model's output, which is the condition of the three assets, is 

assessed and combined at a segment level. The assets-to-segments mapping is established using 

each asset's unique identifier and the unique identifiers of the street segments where the assets are 

situated. Finally, the combined asset conditions are integrated with intervention strategies to 

determine the type of street closures required (partial or complete) and the necessity for 

synchronized or unsynchronized interventions. 

 

Figure 1: Proposed method. 

2.1 Data Preprocessing 

In the initial stage of the methodology, the datasets required for the machine learning process are 

created. The attributes to be included in the datasets are determined based on previous research, 

the quality of the data, and its availability. To this end, a significant amount of data related to the 

various characteristics of each asset is collected and utilized in the classification process. The 

features for each utility asset, and the data values obtained after the preparation phase, are 

presented in Table 1 to Table 3. The intersect tool of the ArcGIS geoprocessing toolbox was 

utilized to combine data from various sources using a unique identifier. The combined data 

underwent preprocessing to detect and eliminate duplicate, missing, erroneous, and outlier values 

from the training, validation, and testing datasets. To further improve the model's accuracy and 

reduce complexity, data preprocessing methods such as feature selection and dimensionality 

reduction were employed. 

Feature selection eliminates redundant and noncrucial features while generating optimal features 

to achieve maximum accuracy. In addition, data normalization using the Z-transformation method 

was performed on numeric features. To avoid bias, the data was shuffled to ensure that each subset 

used in training/cross-validation and testing was representative of the overall data distribution. The 

Synthetic Minority Over-sampling TEchnique (SMOTE upsampling) was used to handle the class 

imbalance in the training dataset. This technique creates new instances of the minority class by 

finding a random neighbor for a subset of randomly selected instances using K nearest neighbors. 

Although the newly generated instances balance the missing instances, they do not provide any 

new information to the model. 
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2.2 ML Model Development 

Following data preparation and preprocessing, the datasets were divided into two parts: 

training/cross-validation and testing datasets. The former constituted 70% of the data, while the 

latter comprised 30%. To enhance the learning model's performance, the cross-validation process 

was carried out on ten sets of mutually exclusive subsets with equal folds. Each fold was prepared 

using either shuffled or stratified sampling. To achieve the highest accuracy, a voting-based 

ensemble algorithm consisting of Random Forest (RF), Gradient Boosted Trees (GBT), and Deep 

Learning (DL) algorithms were used for each fold's training. This combination was necessary 

because the output of each algorithm varied significantly. Finally, hyperparameter optimization 

was conducted using the grid search technique for each base learner in the ensemble. 

2.3 Condition Classification and Segment Level Classification 

Multi-class classification is carried out to determine the conditions of each of the three assets from 

their independent models. The condition of each asset is labeled using a uniform scale of N (No 

intervention required, assets are unlikely to fail in the near future), D (intervention is desirable as 

assets have an estimated time of failure between 10 to 20 years), and R (immediate attention 

required i.e., assets have failed or assets likely to fail between 0 to 10 years). However, the focus 

lies on identifying street segments with conditions with a combination of classes D and R for all 

the assets. These conditions determine the required asset-level intervention strategies needed to 

restore the asset to an N condition. Each segment is assigned a unique identifier, and this ID is 

assigned to each asset located in the segment in addition to the unique identifier of the asset. 

2.4 Intervention Strategies 

Once the conditions of the assets have been classified, the next step is to determine the intervention 

strategies at both the asset and segment levels. Most street segments have multiple water and sewer 

pipes with different characteristics, such as diameter, length, and depth. In cases where the water 

and sewer pipes share the same right-of-way, the water pipes are usually buried above the sewer 

pipes to reduce contamination risks. Therefore, interventions on sewer pipes often require 

excavations below the water pipes, which creates an opportunity for synchronized interventions 

on water pipes. While this may increase intervention costs, it avoids future excavations for 

inevitable water pipe replacements.  

The heuristics used to formulate the intervention strategies for each asset depend on various criteria 

or factors, such as the asset's current condition, performance indicators, and past intervention 

practices. Synchronized interventions also consider the combined strategies of the collocated 

assets at a segment level. Based on Montreal City's intervention guidelines, R-class pavements 

with a PCI ≤ 40 and IRI ≥ 6 will undergo reconstruction if the pavement is rigid or major 

rehabilitation if it is flexible. Major rehabilitation is required if the pavement condition is bad, and 

minor rehabilitation is necessary for D-class pavements. No intervention is needed for N-class 

pavements. However, these interventions depend on the intervention strategies of other collocated 

assets.  

2.5 Street Closure Decisions 

The output of the ML process (the asset condition classes) is combined with the criteria values 

extracted from the inspection data of each asset to determine the asset-level intervention strategies. 
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This study uses condition-based heuristics (Genger and Hammad, 2023) that are generally 

formulated by the asset owners to guide the decision-making process for the interventions of each 

asset. An example includes the use of a combination of the pavement condition index (PCI) and 

international roughness index (IRI) thresholds together with the pavement type as the criteria 

values used to construct the heuristics for determining either a reconstruction, major or minor 

rehabilitation, or no intervention on a street segment. Meanwhile, using the unique identifiers of 

the segments and the collocated assets, the asset-level interventions are then combined at the 

segment level to determine the nature of street closures.  

3 Case Study 

All ML processes were performed on a computer with the following specifications: Ubuntu 

20.04.3LTS, AMD Ryzen Threadripper 3960x 24-core processor x 48 threads, and 251 GB 

memory. RapidMiner Studio Educational 9.10.001 is used to build all ML processes. The GBT 

and DL algorithms were executed using the H2O 3.30.0.1 (RapidMiner, 2021). The dataset covers 

all the boroughs in Montreal, but a portion of the data was held back from the Ville-Marie Borough 

to implement intervention strategies and street closures. To ensure that all three models could later 

be analyzed at a segment level, this reserved dataset was necessary, as many ML data processing 

and splitting techniques involve random sampling.  

Data used in this research was obtained from three primary sources, including intervention and 

network data for all three assets and the failure data for only the water pipes. The summary of the 

datasets is presented in Table 1 to Table 3. Hyperparameter tuning was done on the parameters of 

all three models using a grid search. The models are trained using the combination of every single 

value (i.e., exhaustive search) in the search range, to find an optimal parameter set that is guided 

toward improving the accuracy of each model. All other parameter values for each algorithm retain 

their default values. 

Table 1: Summary of pavement features 

Feature names Values 

Number of road segments 15,603 

Performance condition index (PCI) 

Average PCI 

1-100 

52 

International roughness index (IRI) 

Average IRI 

0 – 13.9 

5 

Rutting (m) 

Average rutting 

0-50 

4.79 

Pavement coating Asphalt, cobblestone, concrete, crushed stone 

Average length (m) 120 

Average surface area (m2) 2,245.1 

Category Arterial, local 

Pavement type Rigid, flexible 

Pavement condition N, D, R 

Table 2: Summary of water pipe features 

Feature names Values 

Number of pipes 127,716 
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Mean age (yrs.),  

Std. Dev. 

73.84 

40.79 

Major materials Gray cast iron, ductile iron, copper, reinforced 

concrete, etc. 

Jurisdiction Local, metropolitan area, centre ville, etc. 

Diameter range (mm) 15-3,900 

Average pipe length (m) 215.4 

Break rate (brk/km/yr) 

Average break rate 

0-15  

0.5 

Break age 1–149 

N_failures (Number of failures in the section) 

Average 

0–15 

0 

R_life (age/estimated useful life) 

Average 

0–1.68 

0.55 

T_length (Average total length of pipes in a section) (m) 286.3 

N_p_bad (Number of pipes in a street section with a bad or 
very bad status) 

Average 

0–8 
 

0.21 

N_p_segment (Number of pipes in a street section) 

Average 

1-27 

1.48 

Pipe condition N, D, R 

Table 3: Summary of sewer pipe features 

Feature names Values 

Number of pipes 119,857 

Major materials Reinforced concrete, grey font, brick, PVC, 

ductile iron, etc. 

Pipe type Combined, sanitary 

Hierarchy I, II, III 

Installation year 1900-2015 

Diameter range (mm) 75-5,325  

Average length (m) 54.19 

T_length (Average total length of pipes in a section) (m) 254.19 

T_n_pipes (Average number of pipes in a section) (m) 5 

R_life (Inspection age/estimated useful life) 

Average 

0–3.48 

0.45 

Rem_life (Remaining life) 

Average 

1-212 

71 

N_p_bad (Number of pipes in a street section with a bad or 
very bad status) 

Average 

0-12 
 

1.14 

Inspection year 1993-2015 

Jurisdiction Local, arterial 

Sewer condition N, D, R 

 

3.1 Pavement, Water and Sewer Pipe Classification Model Performances 

Table 4 presents the results of the pavement, water and sewer pipes ensemble classification 

models. The table shows that using the ensemble algorithm on the pavement training and test 

datasets generated an accuracy of 98.66% and Kappa = 0.98. Applying the model to the test dataset 

generated an accuracy of 98.64%, Kappa = 0.98. The model’s accuracy on the water pipe training 
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and testing datasets is 97.27% and 96.37%, respectively. The test dataset’s Kappa value (0.91) 

shows that only a small number of the expected classification is achieved by chance. The sewer 

model’s training/cross-validation and test datasets accuracies are 86.22 and 82.38%, respectively. 

The corresponding Kappa values for both datasets are 0.79 and 0.67. 

Table 4: Pavement, water and sewer pipes ensemble model performances 

Asset type Data Accuracy (%) Kappa 

Pavement Training dataset 98.66 0.98  

Test dataset 98.64 0.98 

Water pipes Training dataset 97.27 0.93 

Test dataset 96.37 0.91 

Sewer pipes Training dataset 86.22 0.79 

Test dataset 82.38 0.67 

3.2 Intervention Strategies  

Finally, the ML model was applied to the dataset used to test segment-level interventions and street 

closures. The accuracies of all ML models on this dataset are presented in Table 5. Based on the 

segment-level intervention strategies, Figure 2 is the predicted intervention map for street 

segments. The maps show street segments where no intervention, unsynchronized, or synchronized 

interventions are needed and the nature of the street closures. Street segments with no information 

on the collocated assets are labeled as no data. When comparing the actual and predicted sets of 

segment-level interventions, there was a 79.92% similarity. 

Table 5: Accuracy of the models on the street closure dataset 

Ville Marie subset data Accuracy (%) 

Pavement 96.79 

Water pipe 94.70 

Sewer pipes 70.17 

4 Discussion 

The results also show that some street segments undergo partial and complete street closures to 

accommodate the pipe rehabilitation phase and the subsequent pavement reconstruction or 

rehabilitation phase of the intervention. This type of closure reduces the accrued social cost on the 

street segment because road users can access the street during partial closures. The results also 

reveal street segments where the implementation of the MUT could serve as an alternative to the 

synchronized method. Although several criteria determine the placement of MUTs on a street 

segment (Genger et al., 2021), this research can aid in identifying potential street segments which 

can be subsequently ranked using the criteria for determining the MUT placement. 

Although synchronized interventions increase utility cost savings by reducing the number of 

repeated excavations, introducing the MUT as an alternative technique for street sections, where 

the combined condition of the assets is in a critical state, increases the lifespan and ease of 

maintenance of underground utilities. This method of utility placement increases sustainability 

while avoiding future excavations related to utility interventions in the implemented street 

segment. 

GIS maps were used to display the street closures where interventions and subsequent street 

closures are imminent. These visualizations aid in traffic management (alternative route selection 

based on the impact on travel time) and intervention budget estimation (direct and social costs) 
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based on the conditions of the individual assets. By classifying the individual conditions of the 

pipes in a road segment, a more accurate intervention duration can be ascertained.  

Table 6 shows the comparison of the results of each model to individual classification models in 

the literature review. The pavement and water models outperformed all the previous classification 

models, and the sewer condition model outperformed all the models except (Tavakoli et al., 2020).   

Table 6: Model accuracy comparison  

Asset Reference Accuracy% Accuracy % (This research) 

Water 

pipes 

Winkler et al. (2018) 96 

96.37 Robles-Velasco et al. (2020) 85 

Kumar et al. (2018) 62 

Sewer 

pipes 

Harvey and McBean (2014) 76 

82.38 
Mohammadi et al. (2019) 81 

Laakso et al. (2018)  62 

Tavakoli et al. (2020)  93 

Pavement Piryonesi & El-Diraby (2021) 88 
98.64 

Hoang and Nguyen (2018) 87.5 

5 Conclusions and Future work 

This research presents an approach for determining street closures based on the combined 

conditions of spatially collocated municipal infrastructure assets at the segment level. The use of 

ensemble ML methods for classifying multi-asset conditions while using a uniform scale for all 

assets made it applicable for enhancing synchronized interventions at the segment level.  

 

 

Figure 2: Predicted segment intervention strategies and street closures 

Notes: N.I.: No intervention; S: Sewer pipe, P: Pavement; W: Water pipes; Sync: Synchronized; Unsync: 

Unsynchronized; RH: Rehabilitation; RC: Reconstruction, RP: Replacement; PC: Partial closure; CC: Complete 

closure; MUT: Multi-purpose utility tunnel 
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The contributions of this research are as follows: (1) Developing an ML-based method for 

systematic condition classification of different spatially collocated underground municipal assets 

within a segment; and (2) Applying a heuristic approach for determining street closures based on 

the synchronized or unsynchronized interventions at the segment level induced by combining the 

interventions of individual assets within each segment.  

This research was conducted on a dataset of 200 street segments in the City of Montreal and shows 

potential for scaling up to an entire city with similar asset features and intervention strategies. It 

could also include private infrastructure assets in addition to municipal assets. Limitations include 

the need for a balanced sewer pipe dataset with additional features such as slope and soil and the 

exclusion of other buried assets such as gas pipes and electrical cables. Coordination and data 

availability could be an issue when assets are not managed together. Tradeoffs such as budgetary 

constraints and organizational barriers should be addressed in synchronized interventions with 

multiple stakeholders. Future research should consider uncertainties and include risk assessment 

and probability of failure and ML methods. 
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