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Abstract. This research presents an economical approach for Railway projects in their early stages 
of planning that utilizes freely available geodata to generate further geo-context information that 
enriches the semantical and geometrical aspects of Building Information Modelling (BIM). Based 
on publicly available data from the Official Property Cadastre and Topographic Cartographic 
Information Systems, orthophotos, LiDAR scans, and land use properties a dataset is generated and 
semi-automatically annotated. Two Deep Neural Network (DNN) models (i.e., PointNet++ and 
2DPASS) have been trained and tested to segment point cloud data (PCD) from LiDAR scans. The 
best performing model is adopted for deployment in the conducted case study as a proof of concept 
for the suggested methodology. From the segmented PCD, meshes are being created and eventually 
converted to the open format Industry Foundation Classes (IFC). 

1. Introduction 

Digitising the existing rail network is a costly and time-consuming undertaking, especially in 
Germany, where there are more than 33,000 kilometres of railway (Deutsche Bahn AG, 2021). 
Particularly, in the case of early project states of large construction projects, the planning basis 
in the form of status-quo data (i.e., plans, drawings, surveying data) is often incomplete, not 
digitized or not available at all, let alone ready for an integrated way of working based on 
building information modelling (BIM). The process from project initiation to completion can 
often take decades and the acquisition of surveying data of the location is urgently needed to 
avoid biased decision-making and incorrect planning. Especially at a very early point in time 
of the project, there is often no or little budget, but a high demand for decisions (e.g., on 
demand, possible projects variants, extent, etc.). 

A patchy data basis can be improved using commercial aerial LiDAR scanning services. 
However, surveying services are often very expensive and therefore not always available and/or 
are regarded as obstacles. Hence, to follow a cost-effective approach, such as using free of 
charge geographic and location information from online web mapping platforms, and 
Geographic Information Systems (GIS), would be beneficial. The open geodata, which are 
published by official surveying authorities and are available for free, could be an economical 
solution for processing and creating status-quo building information models by using them for 
the creation of as-is-models.  

The techniques of intelligent object recognition in Point Cloud Data (PCD) have already been 
established in systems for self-driving navigation and aerial scans’ segmentation, which could 
be repurposed for the segmentation of synthetic point clouds generated from available geodata. 
This would help identify classes of interest in areas where labels are not available or difficult 
to gather and help derive further insights and semantic information by identifying 
interdependencies and relations between classes and requirements set by public authorities and 
project planners. The differing types of data models and formats used to process such 
information raise the need of using data formats that are widely and freely available, 
information-lossless convertible and compatible with the software resources of the stakeholder. 
This phase always requires extensive data exchange between various stakeholders, which 
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emphasizes the importance of using big open BIM to facilitate interoperability and reduce the 
incompatibility of different data formats individually used by the parties involved.  

The reconstruction of the status-quo as sufficiently accurate BIM-ready as-is railway models 
using freely available PCD (Scan2BIM) could improve decision-making in early planning 
phases immensely. A hybrid approach that incorporates not only PCD but also geospatial data 
could help to overcome many obstacles regarding an insufficient data basis.  

1.1. Point Cloud Segmentation 

Over the past decade, 3D capturing devices, such as LiDAR scanners, Microsoft Kinect, Google 
Project Tango, and Apple’s iPhone LiDAR integration have been regularly improved in terms 
of performance, output quality and price affordability. Thus, making point cloud acquisition 
more widespread and leading to increased need for fast and reliable ways to classify each point 
in the point cloud automatically for a wide range of applications. The earliest works for 
semantic segmentation, like feature extraction, attribute clustering, region growing, and model 
fitting relied heavily on predefined specific semantic features and assumptions of spatial 
relations and geometric constraints in the point clouds that were too rigid and constrictive for 
generalised classification and segmentation tasks (Zhang et al., 2021). Hence, the early 
adoption of semantic segmentation via Machine Learning methods began in mid-2000s with 
(Lalonde et al., 2005) leading the way to further significant improvements with the adoption of 
classification methods like Random Forests, Markov Networks, Bayesian Discriminant rule and 
Support Vector Machine (SVM) (Chehata et al., 2009). 

The focus has shifted a decade later towards deep learning methods for their superior outcomes, 
with the publication of the Multi-view Convolutional Neural Network (MVCNN) (Su et al., 
2015) and VoxNet (Maturana and Scherer 2015). The former utilised max-pooling of multiple 
views’ features, which kept only the maximum valued elements of each view per se, yet caused 
loss of information for smaller features. Huang and You  (2016) used the latter VoxNet 
architecture to label large scale LiDAR PCD for urban scenes including 7 main categories like 
buildings, trees, poles, cars, plane, wires and a miscellaneous class. 

Therefore, the published DL networks fall mainly into four categories, i.e., projection- and 
discretisation-based for the earlier works, point-based methods more recently, and hybrid 
methods that fit no single label precisely. These early approaches rose up to address the need 
of fitting nonstructured, unordered and irregular PCD inputs into encoders, where the 
projection-based architectures, like SnapNet (Boulch et al., 2018; Yang et al., 2021), addressed 
it by using an image segmentation backbone on multiple image views of a point cloud to 
generate depth maps, then back-projecting the predictions into 3D space. Alternatively, 3D-
CNN relied on bird’s eye view projections to learn to fill occlusions (Yang et al., 2021). The 
latter discretisation method (Maturana & Scherer, 2015; Yan et al., 2018), relied generally on 
combining features between regions or points for estimating closeness or similarity between 
points or voxels and merging them when a threshold for surface property and/or spatial criteria 
are met, which may cause problems related to information loss and higher computational 
complexity.  

The point-based methods rely on Pointwise Multi-Layer Perceptron, like the PointNet++ 
architecture (Qi et al., 2017) or its modified versions, as well as the Kernel Point Convolution 
method (KPConv) (Thomas et al., 2019). Those methods proved highly capable of semantically 
segmenting point clouds for LiDAR scans of railway tunnels for 4 classes (i.e., ground, lining, 
wiring and rails), albeit with the latter model architecture garnering better evaluation metrics 
values across all classes (Soilán et al., 2020). 
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1.2. Scan2BIM in Railway Infrastructure 

The Scan2BIM approach for the as-is reconstruction of rail infrastructure has been the subject 
of many recent publications. In most cases, the focus of the investigations is the extraction of 
the horizontal alignment and/or the vertical gradient from PCD (Yang & Fang, 2014; Cheng et 
al., 2019; Soilán et al., 2021; Cserép et al., 2022). The design of the alignment is subject to a 
strict set of geometric rules in planning, which can be utilized in the detection of the alignment. 
However, rail infrastructure consists not only of tracks, but also of track-related equipment, 
such as overhead contact lines or electrical power supply systems and their attachment to masts 
(Grandio et al., 2022). Since these components are geometrically aligned with the track, the 
course of the track can be used for identification (Ariyachandra & Brilakis, 2020; Cserép et al., 
2022). (Chen et al., 2020) used PCD to derive, among others, the railroad tunnel cross-sections.  

What the aforementioned publications have in common is the highly detailed point cloud data 
they are using. Often ground-based Mobile Mapping systems were used, resulting in high point 
densities and accuracies in millimetre range. The object detection furthermore was only relying 
on the PCD itself, sometimes including also geometric planning rules. Additional geodata was 
not considered. Many relevant objects could be identified and reconstructed, such as poles, 
cables, signals, the tracks, traffic lights, etc. In some cases, IFC models of the reconstructed 
objects were generated and therefore made the results possibly available for further usage in 
planning (Ariyachandra & Brilakis, 2020; Soilán et al., 2021).  

1.3. Research Questions 

This publication focuses on the question on how to combine open geodata from GIS and PCD 
to enhance recognition of railway objects within point clouds. Subsequently, by semantic 
segmentation of PCD, railway object may be reconstructed as 3D meshes and then transformed 
into the open IFC, which can provide an as-is model for a BIM-based planning workflow. This 
paper focuses therefore on the semantic segmentation of PCD and the transfer from 
reconstructed 3D meshes to the open format IFC. We hypothesize that the inclusion of GIS data 
can help to overcome obstacles related to insufficient data basis. For this purpose, we relied 
only on freely available data, using only open-source tools and converted our results into the 
open BIM data format IFC. 

2. Methodology 

Figure 1 demonstrates a general overview of the devised workflow. The input data for the 
training, testing and validation of the semantic segmentation DL model is freely downloaded 
from open geoportal sources. Those LiDAR scans generally lack meaningful classification of 
points except for ground. The point clouds would be automatically pre-processed for inclusion 
of textures from orthographic photos, cleaning of noise, use of publicly available labelling data 
to create the annotation masks of said point clouds and augmentation. 

Amongst the labels of interest for the research are nature protected areas, construction sites, 
railways, roads, vegetation, water areas and water ways, pedestrian roads (e.g., hiking and 
cycling routes), etc. The PointNet++ Deep Learning architecture (Qi et al., 2017) would be 
utilised to train a model capable of segmenting the aforementioned classes of interest on similar 
unseen (for the trained model) LiDAR scans via inference. The segmented point clouds are then 
used to generate more meaningful digital surface models to be exported into IFC. The 
integration of the 3D buildings of development level 2 (LoD2) into the model and the 
enrichment with further semantics derived from the identified classes is thus facilitated. This 
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would enhance the storage, processing and retrieval of data between all parties involved in the 
planning phase without technical limitations or restrictions. 

Figure 1: General workflow of integrating geodata derived contexts into BIM and potential use cases. 

3. Implementation 

The data sources used originate from the German official registers for topographical and 
cadastral data (ATKIS/ALKIS) and Thuringian State Office for Land Management and 
Geoinformation via the Geoportal of the State of Thuringia (Thüringer Landesamt für 
Bodenmanagement und Geoinformation, 2023). The position reference system is ETRS89, 
UTM zone 32N (respectively 33N for Saxony) and the German height reference system 
DHHN2016. The following table shows the used data. 

Table 1: Freely available input data used within the implementation and case-study. 

Data Format Description 

Digital Surface Model (DSM) *.laz 3D PCD, uncoloured

Digital Elevation Model (DEM) *.laz 3D PCD, uncoloured

Digital Orthographic Photos (DOP) *.tiff 2D images, coloured

Cadastral Maps (ALKIS) *.shp 2D vector data 

Topographical Maps (ATKIS) *.shp 2D vector data 

Buildings, LoD 2 (CityGML1) *.gml 3D city model data 

The following Figure 2 shows the applied implementation process which is coarsely separated 
into three steps.  

Firstly, the input data is prepared using the GeoPandas library for Python. This includes the 
import of the Digital Surface Model, the DOP and the ATKIS/ALKIS data. From 
ATKIS/ALKIS the class layers are generated and in a next step, the PCD is segmented 
according to the class layers. From the DOP, the colours are assigned to the initial PCD. The 
results of the first step are two point cloud sets, one serving as a mask and the second serving 
as the colour-enriched data set that the mask will be applied to.  
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Secondly, the LiDAR scans, coloured 
orthophotos, and mask information 
derived from the ALKIS/ATKIS vector 
data form the dataset compiled for 
training the DNN model. Initially, a 
colour is deduced for each point as the 
LiDAR scans do not contain colour 
values for points, by sampling the RGB 
channels of the relevant orthophoto for 
the matching grid cell using a predefined 
pipeline script from PDAL (Howard 
Butler et al., 2023). Next, the .laz files 
are split into the 3 main classes 
identified, i.e., ‘unclassified’, ‘ground’ 
and a reserved overground class ‘20’ 
comprising all other classes combined. 
The annotation masks of the subclasses 
for buildings, water areas and vegetation 
classes are annotated automatically 
based on the label masks from 
ALKIS/ATKIS using spatial predicate 
queries. Only the classes for traffic (i.e., 
roads and railway) had to be annotated 
semi-automatically relying on the 
polylines available from ALKIS as a 
guiding alignment. Figure 3 showcases 
a grid cell sample of the utilised geodata.  

Both resulting PCD sets are used to train 
the neural network architecture using 
Python as the programming language. 
Both PointNet++ and 2DPASS 
architectures were used for training, 
where the former relies on colourised 
PCDs and annotations as input, and the 
latter on PCDs, orthophotos and 
annotation masks respectively (Qi et al., 
2017; Yan et al., 2022). The latter model 
was decided on for the semantic 
segmentation of the classes buildings, 
water areas, roads, railway and 
vegetation. The dataset contains 549 
grid cells in total from the Free States of 
Thuringia and Saxony for the cities of 
Erfurt, Jena, Weimar, Leipzig and 
Dresden respectively. Every PCD tile consisted o
of 1 km², meaning a point density of around 10
from the Geoportal of Thuringia were conside
(Landesamt für Geobasisinformation Sachsen, 20
GPU (Nvidia RTX 5000 Graphics Card).  

F
re
igure 2: Implementation workflow for 3D 
f between 10 and 20 million points in an area 
.000 to 20.000 points per m². Not only points 
red, but also from the Geoportal of Saxony 
23). The model was trained for 200 epochs on 

construction of relevant geo-context objects. 
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(a) (b) (c)

(d) 

(f) 

(e) 

Figure 3: Pre-processing Steps on a grid cell sample. (a) Exemplary orthophoto of the cell, (b) Original 
LiDAR scan of the relevant cell comprising the 3 main LAS classes, (c) Colourised LiDAR scan via 
sampling colours from the orthophoto, (d) Bird’s eye view of the LiDAR scan, (e) Bird’s eye view of 

the colourised LiDAR scan, (f) ALKIS mask. 

Thirdly, from the classified point cloud, 3D meshes can be reconstructed using Python Open3D 
and the MeshLab libraries. Finally, the segmented PCD inferred from the trained model can be 
mapped to selected IFC classes (see Table 3) and exported as a 3D model into IFC4x3 using 
IfcOpenShell. The respective IFC classes have been chosen manually. In case of the extracted 
railway body, IfcAlignment first seems like an appropriate match, but due to its nature of a 
calculated curve by using starting point, direction angle and length, the railway body has been 
exported as IfcElementProxy. This was considered more appropriate because not only the 
alignment was extracted from the PCD, but the whole railway body including railroad ballast, 
sleepers, rails, catenary, etc.  

4. Case Study and Results 

To test the aforementioned methodology, a case study is carried out. To that end, a PCD grid 
cell of the city of Dresden was used (Landesamt für Geobasisinformation Sachsen, 2023), 
including the famous Dresden Frauenkirche and the main train station. The chosen area is 
around 1 km² and includes around 32.300.000 points, equalling around 32 points per m². For 
railway planning this is a particularly interesting area due to dense urban development and 
limited moving space.  

Depending on the source of the .laz files, they include already a basic classification. Usually, 
the classified .laz data is not available for free and only three default classes exist within the 
files: Not classified, Unclassified and Ground. Even if there are more classes available, the 
target classes for extraction within this case study are always a mix of several provided .laz 
classes and have to be extracted separately.  
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(a) (b) (c)

Figure 4: Pre-processing of PCD for case study. (a) Original LiDAR scan, (b) The colourised PCD for 
the LiDAR grid cell based DOP colour sampling, (c) Inferred segmentation from the trained 2DPASS 

model. 

The PCD tile, the referencing DOP were pre-processed and fed into the trained 2DPASS model 
as described in chapter 3. The reconstructed model was then converted into IFC. For the 
conversion to IFC4x3, the relevant segmentation classes were derived and mapped to its 
identified most suitable IFC entity as detailed in Tables 2 and 3 respectively. 

Table 2: Values and meanings of default LAS 
classes in LiDAR scans of dataset used. 

Class 
Value

Meaning 
Class 
Value

Meaning 

0 
Created, Never 

Classified 
10 Rail 

1 Unclassified 11 Road Surface 

2 Ground 12 Reserved 

3 
Low 

Vegetation 
13 

Wire Guard 
(Shield) 

4 
Medium 

Vegetation 
14 

Wire Conductor 
(Phase) 

5 
High 

Vegetation 
15 

Transmission 
Tower 

6 Building 16 
Wire Structure 

Connector 
(Insulator) 

7 
Low Point 

(Noise) 
17 Bridge Deck 

8 Reserved 18 High Noise 

9 Water >18 User Defined 

Table 3: Freely available input data used within 
the implementation and their suggested relevant 

shape representation and entity in IFC. 

Main/Sub
Segmentation 

Class 

Class 
Value

IFC 
Shape 

IFC Entity 

Ground Terrain 2 
Triangulat
edFaceSet

IfcSite 

Overground 20 - IfcProxy 

Vegetation
3,4,5,

20 
Brep IfcProxy 

Buildings
0,1,6,

20 
Triangulat
edFaceSet

IfcBuilding 

Water 2,9 
Triangulat
edFaceSet

IfcProxy 

Roads 2,11 
Triangulat
edFaceSet

IfcPavement

Railway Body 2,10 
Triangulat
edFaceSet

IfcProxy 

Miscellaneous 0,1,2 
Triangulat
edFaceSet

IfcProxy 

Unclassified 0,1 Brep IfcProxy 

Figure 5: Outcomes of the case study. (a) Segmented ‘Building’ class, (b) Segmented ‘Vegetation’ 
class, (c) Segmented ‘Railway’ class, (d) Connected component labelled instances for the class 

‘Building’, (e) Connected component labelled instances for the class ‘Vegetation’, (f) Connected 
component labelled instances for the class ‘Railway’ 

The resulting segmentation was visually checked. The visual inspection did not reveal obvious 
divergences. Figure 5 showcases the resulting semantic segmentation of the PCD and the 
integration of the meshed classes into IFC, whereas the resulting IFC file ultimately consists of 
nine classes, allowing a semantic differentiation within the BIM model. To not only rely on the 
IfcType, the class names from the segmentation process were additionally included as an 
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attribute of IfcLabel. Following Figure 5 shows the most relevant extracted classes (buildings 
in red, vegetation in green, railway body in brown) as segmented PCD (via inference) and the 
post-processed segmented PCD as instances. To split instances for meshing, connected 
component labelling was used.  

(a) (b) (c)

(d) (e) (f)

Figure 5: Outcomes of the case study. (a) Segmented ‘Building’ class, (b) Segmented ‘Vegetation’ 
class, (c) Segmented ‘Railway’ class, (d) Connected component labelled instances for the class 

‘Building’, (e) Connected component labelled instances for the class ‘Vegetation’, (f) Connected 
component labelled instances for the class ‘Railway’ 

5. Discussion 

This paper shows a completely open-source, semi-automated process to speedily create ready-
to-use data of surroundings with a focus on railway projects. It presents a methodology for 3D 
reconstruction of as-is data considering publicly available PCD and GIS data. The used GIS 
data helps to semantically segment the PCD, especially when the available data is not very 
detailed and taken only from aerial scans. The conducted case study was successfully carried 
out, resulting in an IFC model of the segmented classes from the PCD of the city of Dresden, 
as can be seen on Figure 6.  

(a) (b)

(c)

Figure 6: Resulting meshes and IFC files. (a) Colourised building instances based on colour sampling, 
(b) Converted CityGML LoD2 model into IFC4x3, (c) Overlay of the meshed instances from 

Subfigures 5(a) and 5(b) respectively for visual comparison. 

Previous research usually considers highly detailed PCD, specifically surveyed for a purpose 
and using ground-based Mobile Mapping Systems. GIS data was not considered within the 
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reviewed literature. Our findings contribute to the approach of not relying on a well-situated 
data base but to combine the best available data in order to reach results that are sufficient for 
the project phase and the use case. 

There are several limitations to be stated: Firstly, the mapping between the IFC schema and the 
segmented classes is only superficially considered, leading in a relatively coarse use of IFC 
classes. The difficulty with the IfcAlignment class is that it consists of both the 2D alignment 
and the 3D gradient, making the reconstruction from scratch more challenging than other 
classes. The reconstruction of the IFC alignment in particular and the proper mapping of the 
railway equipment will be the subject of further case studies (Wijnholts et al., 2016). Secondly, 
the results were visually checked and compared with the ground truth data (in this case for 
example using CityGML data from the case study area for the comparison of the building class). 
The visual inspection did not reveal obvious divergences, nonetheless future work will quantify 
the exact accuracy of the semantic segmentation. It appeared that the buildings at the borders 
of the PCD tiles were incomplete due to being cut into 1km² tiles. The provided CityGML data 
from Landesamt für Geobasisinformation Sachsen did not take into account the cropping of 
bordering building instances at the edges of the grid cell. Therefore, all buildings that were only 
slightly overlapping the borderline have been included. The PCD on the other hand includes 
only points within the grid cell. It was not quantified, if the number of buildings is significant, 
yet the treatment of incomplete features will be object to further research. 

We investigated how PCD and GIS data can be combined for the creation of low-threshold, 
BIM-ready as-is models. For this, only freely available data and software were used. Future 
application could cover many different use cases relevant for infrastructure planning and to 
enhance decision-making with poor data conditions. Furthermore, the integration and BIM and 
GIS data has high relevance when considering spatial effects like noise, floods, impacts on 
humans, flora and fauna, and so on. If applied systematically, this approach can help reduce 
cost and effort digitizing infrastructure stock with open data to make better decisions from an 
early stage on. It contributes to solving the common problem of insufficient data and is a 
flexible approach towards taking the best out of a heterogeneous data basis.  
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