
1 

 

An Innovative Approach for Detecting Bridge Defects Based on UAV 

Imagery in Low-Light Environments 

LIANG Zhaolun (a), WU Hao (a), WANG Mingzhu (b), Jack C.P. Cheng (a) 
(a) The Hong Kong University of Science and Technology, Hong Kong  

(b) Loughborough University, United Kingdom 

zliangaq@connect.ust.hk  

Abstract. Bridge inspection plays a pivotal role in maintaining bridge safety and structural integrity, 

which is a critical task in the civil engineering industry. The emerging adoption of UAV (Unmanned 

Aerial Vehicle) image-based inspection, coupled with AI-driven defect detection models, offers a 

swift, secure, and cost-effective solution for maintaining bridges. However, when inspecting low-

light environments, such as areas under bridges, the poor illumination and increased noise in the 

image often lead to issues with false detections or missed detection. Regarding the problem, this 

paper applies image enhancement techniques to low-light under-bridge images and evaluates the 

performance of commonly used deep learning-based detectors for defect detection. To improve 

detection performance, an attention mechanism CBAM is incorporated into YOLOv5. Results 

demonstrate that the proposed CBAM-YOLOv5 algorithm can improve detection accuracy by 2.2%-

8.1% compared to other object detectors. 

1. Introduction 

Maintaining infrastructures is a common concern for civil engineers, as ensuring these assets' 

regular and safe operation is a persistent and complex issue. Continued monitoring and specific 

inspection strategies are necessary for maintaining infrastructures such as roads, tunnels, 

reservoirs, and bridges. Bridge inspection is one of the most difficult tasks, as it frequently 

entails working at elevated heights and examining the undersides of bridges in poorly lit 

environments. Inspecting bridges with traditional methods can pose significant risks to 

inspectors and induce high costs associated with their time-consuming and laborious 

implications. As bridges will inevitably deteriorate over time, it is essential to introduce an 

effective bridge inspection approach to prolong their lifespan and reduce the likelihood of 

disruptive failures. In recent years, there has been growing recognition of the potential of UAVs 

for bridge inspection with the rapid development of UAV technologies. UAV stands for 

Unmanned Aerial Vehicle, which is also commonly referred to as a drone. UAVs have the 

characteristic of high manoeuvrability and can capture high-quality data during their navigation, 

making them an exceptional tool for inspecting bridges. Another substantial benefit of using 

UAVs for bridge inspection is their ability to accommodate multiple sensors for various 

purposes, including high-resolution cameras, infrared cameras, and lidar. 

Cameras are cheap and compatible in most cases, making them the competent candidate for 

visual inspections. The images captured by cameras offer a wealth of visual information, and 

the implementation of artificial intelligence (AI) algorithms has made it possible to process this 

visual data automatically. AI-driven detection models can employ sophisticated machine 

learning and deep learning algorithms to detect objects or anomalies in images or videos. 

Training these models on comprehensive bridge datasets and corresponding defect annotations 

can accurately pinpoint various defects, such as cracks, corrosion, and spalling, in bridge 

inspection works. 
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However, when dealing with real-world bridge inspections, most of the then-existing AI models 

are not capable to deliver satisfactory results. One particular challenge is the assessment of 

areas beneath bridges, as these locations are often subject to low-light conditions. Distractions 

include the spatiotemporal of sunrise and sunset, seasonal variations, weather, and the presence 

of obstructions that can affect the quality of under-bridge images. Detecting defects in these 

dimly lit environments is complicated for both traditional and drone-based inspection methods 

due to the lack of clarity and detail in the acquired images. The reduced contrast, uneven 

illumination, and increased noise in low-light images (LLIs) can adversely affect the 

performance of the detection models. Therefore, attempting to detect defects in these 

suboptimal images will lead to inaccurate results. To address these challenges, it is essential to 

employ pre-processing techniques, such as LLI enhancement and denoising methods, prior to 

applying object detection algorithms.  

2. Methodology 

2.1 Data Collection 

The process of detecting defects in low-light environments initially starts by capturing under-

bridge images using UAV. At the beginning, the site investigation determines the UAV flight 

path and viewpoints, and the UAV’s camera must be titled upwards to capture the LLIs under 

the bridge during the inspection. Figure 1 illustrates the procedure of low-light environment 

defect detection, which encompasses a series of techniques and strategies designed to enhance 

the visibility and quality of images, facilitating better analysis and decision-making for 

maintenance purposes. It is worth noting that acquiring a flight permit from the related sectors 

is an essential prerequisite before undertaking any UAV inspection activity. The experiment 

was conducted on the T-shape bridges to validate the feasibility of the proposed method. The 

T-shape results from the combination of a vertical column (stem) and a horizontal beam (cap). 

This configuration forms a special box-like structure that acts as a barrier to sunlight and nature 

lights, casting additional shadows on the under-bridge areas. Real-time monitoring of UAV 

flight is imperative during the navigation process, as the region under the bridge constitutes a 

GPS-shielded environment. Except for the effects of the dark environment under the bridge, the 

lack of GPS signal can easily lead to pilot errors and improper actions, potentially resulting in 

safety incidents. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart of the low-light environment defect detection process 
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2.2 Image Enhancement Technologies 

Upon obtaining the low-light images (LLIs) under the bridge, it is crucial to perform image pre-

processing techniques to ensure the successful implementation of defect detection. LLIs often 

suffer from issues such as increased noise levels, low contrast, and reduced visibility, which 

can result in false detections and reduced confidence when conducting image detection. 

Moreover, many object detection models are trained with well-lit and high-quality images and 

may not be optimized for processing LLIs. Typical traditional machine learning enhancement 

models including Gamma correction, histogram equalization (HE) (Pisano et al., 1998), Retinex 

theory-based methods, and frequency-based methods (Huang et al., 2013). While traditional 

algorithms can be effective in certain scenarios, they often face considerable difficulties when 

performing specific image enhancement tasks. First, traditional methods are often built with 

fixed parameters and assumptions, tend to cause the problems of over-enhancement and under-

enhancement. Second, the color balance of the images will be altered during the enhancement, 

resulting in unnatural color shifts in the targeted images. Third, traditional methods face 

difficulties in handling images with extremely dark or bright regions, as they lack the capacity 

to balance enhancement evenly across the entire image. Therefore, employing advanced deep 

learning-based enhancement techniques to deal with the under-bridge problem is more 

favorable. 

In this paper, the enhancement model used is Zero-DCE (Zero-Reference Deep Curve 

Estimation) (Guo et al., 2020), a deep learning-based zero-reference enhancement technique. 

Zero-DCE leverages a deep network to estimate pixel-wise and high-order curves for dynamic 

range adjustment to enhance the input images. The dynamic range adjustment enables the model 

to adaptively adjust the contrast and brightness of different regions in the images, resulting in 

more balanced enhancements. Many image enhancement models, especially those based on 

supervised learning, require paired images for training. In these instances, the training dataset 

comprises low-light images and their counterpart high-quality images. Due to the absence of a 

public database containing dark images of under-bridge, the data utilized in this study were 

acquired by the authors. The well-known dark image datasets include the ExDark (Loh & Chan, 

2019) and DICM (Lee et al., 2012) dataset; however, these datasets do not contain 

corresponding paired images. Moreover, many of these datasets are primarily used for object 

detection rather than defect detection. The Microsoft COCO (Lin et al., 2014) dataset also 

contains low-light images, but they comprise less than 0.2% of the overall data, posing 

difficulties for their effective utilization in low-light studies. Considering these factors, 

employing Zero-DCE to enhance the LLIs captured under bridges serves as an ideal solution. 

Compared to other image enhancement algorithms, Zero-DCE is an end-to-end model and does 

not require reference images for training, ensuring training efficiency and simplifying the 

enhancement pipeline. Additionally, the model can be easily fine-tuned or adjusted to suit 

different image modalities and datasets, making it a flexible and versatile solution for various 

enhancement applications. 

 

2.3 Image Denoising and Augmentation Technologies 

After completing the image enhancement process, a denoising procedure for the under-bridge 

images is necessary. In most cases, the step of image enhancement will amplify the noise 

present in the original image, which can lead to unwanted artifacts and disturbance. Image 

denoising is essential in alleviating or suppressing noise amplification, consequently enhancing 

the performance of downstream tasks, such as image classification, object detection, and 

segmentation. Block-Matching and 3D Filtering (BM3D) (Dabov et al., 2007) is a robust 

algorithm exploiting spatial and transform-domain redundancies to achieve effective image 
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denoising. The BM3D consists of two stages: the block grouping stage and the collaborative 

filtering stage. In the grouping stage, the algorithm employs the block-matching technique to 

search for similar fragments; those fragments will be stacked to form 3D arrays. In the 

collaborative filtering stage, a shrinkage operation is applied to the transform coefficients of 

each 3D group, which can diminish noise while retaining the essential characteristics of the 

signal. The 3D group is later processed by an inversion of linear transform to form a set of 2D 

image fragments to the original image position, and the overlapping fragments are weight-

averaged to further ensure the noises are effectively filtered. Moreover, as the number of 

acquired images is relatively small, it is essential to perform appropriate data augmentation 

techniques to prevent overfitting and instability problems of the detection model. In this study, 

several augmentation techniques are applied to the existing data, such as rotation, flipping, and 

cropping. 

 

2.4 Object Detection Models 

Object detection models are among the most frequently used techniques in computer vision 

tasks. Traditional object detection models, including Viola-Jones (Viola & Jones, 2001) 

detectors, Histogram of Oriented Gradients (HOG) (Dalal & Triggs, 2005), and Deformable 

Part Model (DPM) (Felzenszwalb et al., 2008), relied on hand-crafted features due to limited 

image representation available at the early age. The performance of traditional object detectors 

is suboptimal in many cases because they were designed on human intuition and sensitive to 

variations in object appearance, such as occlusion, pose, scale, and lighting. Bridge inspection 

images often encounter the problem of variant lighting and object occlusion, making it 

challenging to achieve good results using hand-crafted feature-based detectors. Compared to 

traditional methods, deep learning-based object detectors exhibit greater resilience to variations 

and provide notable enhancements in performance, adaptability, and effectiveness.  

The Region-based Convolutional Neural Network (R-CNN) (Girshick et al., 2014) represents 

a significant breakthrough in the field of computer vision, leveraging deep convolutional 

networks to achieve exceptional object detection accuracy. In R-CNN, selective search is 

utilized to generate region proposals, and a pre-trained CNN is employed for feature extraction 

in each proposal. Object prediction is completed using the linear Support Vector Machine 

(SVM) (Cortes & Vapnik, 1995) classifiers in each region generated. The introduction of R-

CNN has been followed by several iterations and improvements, culminating in the creation of 

Fast R-CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2017). Fast R-CNN introduces the 

Region of Interest (RoI) pooling layer that enables the detection network to extract fixed-size 

features from each RoI, resulting in faster detection speed than R-CNN. The subsequent release 

of Faster R-CNN introduced a significant improvement by replacing selective search with a 

Region Proposal Network (RPN) for generating region proposals. This enhancement further 

accelerated the object detection process.  

In contrast to R-CNN methods, You Only Look Once (YOLO) (Redmon et al., 2016) is capable 

of detecting objects throughout the entire image rather than examining specific regions. For 

efficient detection and training, the YOLO network partitions the image into cells and estimates 

each cell's class probabilities and bounding box coordinates. Subsequently, it consolidates 

predictions from all cells to generate a final set of detections for the image. YOLO is categorized 

as a one-stage detector due to its ability to detect the entire image, leading to faster detection 

speeds compared to the two-stage detectors such as R-CNN, Faster R-CNN, and FPN (Feature 

Pyramid Networks) (Lin et al., 2017). Nonetheless, this speed comes at the cost of accuracy, 

particularly when dealing with small and closely clustered objects. In recent years, YOLO has 
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spawned numerous derivative algorithms, such as YOLOv2, YOLOv3, up to YOLOv7, among 

others, with the aim of improving object detection accuracy and overall performance. 

Other mainstream one-stage object detectors, such as SSD and RetinaNet, are proficient in 

detecting small objects and managing objects with diverse sizes. The Single Shot MultiBox 

Detector (SSD) (Liu et al., 2016) employs multi-reference and multi-resolution detection 

techniques to extract features, enabling it to effectively identify objects of varying sizes and 

aspect ratios, especially improving small objects' detection accuracy. RetinaNet (Lin et al., 2017) 

uses a focal loss function that down-weights the impact of easy negative examples, focusing 

instead on hard negative examples as they provide more informative training examples for the 

network to learn from. 

 

2.5 YOLOv5 with Improved Attention Mechanism 

Several object detectors were employed to detect the defects in the optimized under-bridge 

images, including Faster R-CNN, SSD, RetinaNet, YOLOv5, and CBAM-YOLOv5. Among 

the many detection models, YOLOv5 is distinguished by its high efficiency and real-time 

performance, demonstrating significant value in both industrial applications and academic 

research. In this paper, CBAM (Convolutional Block Attention Module) (Woo et al., 2018) is 

integrated with YOLOv5 to develop CBAM-YOLOv5 for achieving higher detection accuracy, 

where CBAM is an attention mechanism. The attention mechanism is a widely used data 

processing method in machine learning tasks across various fields. The main concept of the 

attention mechanism in computer vision is to identify correlations between raw data and then 

emphasize important features. These features can include channel attention, pixel attention, and 

multi-order attention. The CBAM is a lightweight module that performs attention operations in 

the channel and spatial dimensions. It consists of a channel attention module (CAM), which 

enables the network to focus more on the foreground and meaningful areas of the image, and a 

spatial attention module (SAM), which allows the network to prioritize locations that are rich 

in contextual information about the entire picture. The structure of CBAM mechanism is shown 

in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2: Structure of CBAM 

 

In the channel attention module (CAM), the input feature map with a shape of H×W×C 

undergoes global max pooling (GMP) and global average pooling (GAP) operations, resulting 

in two feature maps of size 1×1×C. These two obtained feature maps are passed through a two-

layer multilayer perceptron (MLP) with a hidden layer. The first layer of the MLP contains C/r 
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neurons (where r is the reduction rate) with the ReLU activation function. The second layer has 

C neurons and shares weights with the first layer. The output features are then added element-

wise and passed through a sigmoid activation function to produce the final channel attention 

features. These features are multiplied with the original input feature map to obtain the channel 

refined feature as the input for the spatial attention module (SAM). After applying global max 

pooling (GMP) and global average pooling (GAP) to the input features, two feature maps of 

size H×W×1 are obtained. These feature maps are concatenated, and the resulting tensor is 

passed through a series of convolutional layers to reduce its dimensionality and generate spatial 

attention feature using a sigmoid activation function. Finally, the spatial attention features are 

multiplied with the input feature map to obtain the CBAM feature map. 

3. Validation of the Proposed Method 

3.1 Application to the T-shape Bridge 

Among all infrastructure inspection projects, bridge inspection is considered intricate because 

it requires high-altitude and low-light operations. While UAVs can serve as an effective solution 

for high-altitude inspection, they may not have the ability to address the low-light challenges 

directly. In most cases, the lighting conditions on a bridge's upper and lower structures can vary 

greatly. Due to the absence of obstacles, the components on the upper bridge are more easily 

observed, whereas under-bridge structures often remain in low-light environments for 

prolonged periods. To assess the under-bridge area, traditional bridge inspection methods often 

use additional lighting sources to improve visibility for inspections conducted in low-light 

conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3: Complex under-bridge environment 

 

The T-shape bridge selected for the experiment is located in Guangzhou, China. An example of 

the target bridge appearance and the environment of the under-bridge area captured by the UAV 

is shown in Figure 3. In comparison to other bridge types, the box-like under-bridge structure 

of a T-shape bridge can generate additional shadows, further exacerbating low-light challenges 

during inspections. It is important to note that the camera angle of the UAV must be facing 

upwards for image capturing during aerial inspections. The experiment was conducted under 
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favorable weather conditions, with a total of 540 under-bridge LLIs captured by DJI Mini 3 Pro. 

The operating environment of the whole process was using Intel Core i7-6700 CPU @ 3.4 

GHz×8 and an NVIDIA GeForce GTX 3070 GPU. The universality of the proposed approach 

is demonstrated using a generic operating system in this research, indicating that it can be 

replicated at an affordable cost. 

 

3.2 Result and Discussion 

Table 1 presents the detection results with different IoU thresholds in this study and 

demonstrates that the proposed CBAM-YOLOv5 model outperforms other classical deep 

learning algorithms in detecting enhanced LLIs. Compared to other algorithms, the mean 

average precision (mAP) improvement of CBAM-YOLOv5 is between 2.2% and 8.1% when 

the IoU threshold is set to 0.5. In Table 1, the metric mAP@0.5:0.95 denotes the average 

precision across a series of IoU thresholds, ranging from 0.5 to 0.95, with an increment of 0.05. 

Precision@0.5 evaluates the ratio of accurate detections to all detected objects when the IoU 

threshold is set to 0.5. Precision@0.5:0.95 computes the respective precision when the optimal 

IoU threshold is chosen between 0.5 and 0.95. Recall assesses the capability of the model to 

identify positive instances accurately. The F1-score reflects the model's performance by 

considering the harmonic mean of precision and recall.  

Instead of adjusting the backbone of YOLOv5, the proposed method integrates CBAM into the 

enhanced feature extraction network, allowing it to be utilized without compromising the 

original features extracted by the network. The reason for avoiding backbone modification is 

that adding an attention mechanism may alter or reduce the original weights, resulting in 

undesirable prediction results. Figure 4 shows the image enhancement achieved by applying 

Zero-DCE and BM3D and the detection outcomes obtained with CBAM-YOLOv5. The results 

indicate that the proposed approach is more effective in identifying defects in the low-light 

environment of a T-shaped bridge.  

Table 1: Detection results obtained by different object detectors 

Models 
mAP 

@0.5 

Precision 

@0.5 

Recall 

@0.5 

F1-Score 

@0.5 

mAP 

@0.5:0.95 

Precision 

@0.5:0.95 

Recall 

@0.5:0.95 

F1-Score 

@0.5:0.95 

SSD 0.832 0.778 0.729 0.752 0.569 0.461 0.373 0.412 

Faster R-

CNN 
0.878 0.844 0.729 0.781 0.630 0.512 0.435 0.470 

RetinaNet 0.891 0.823 0.781 0.801 0.670 0.605 0.450 0.514 

YOLOv5 0.902 0.853 0.776 0.812 0.708 0.625 0.420 0.502 

YOLOv5+

CBAM 
0.906 0.857 0.792 0.823 0.697 0.625 0.436 0.515 

After comparing the results obtained from various detection models, it was found that SSD had 

the worst detection performance. One of the reasons for the inferior performance of SSD 

compared to other models is that it was developed earlier and makes a trade-off between 

detection speed and accuracy. Although SSD and Faster R-CNN were developed around the 

same period, Faster R-CNN can achieve higher detection accuracy due to its two-stage detection 

process. RetinaNet utilizes the focal loss function to achieve a better balance between recall 

and precision, which is important in crack detection where the target objects are relatively small 

or sparse. As a well-developed algorithm, YOLOv5 surpasses other models in detection 

capacity and speed due to its innovative neck structure, spatial attention modules, and anchor 

box design. Its fast processing speed also enables it to efficiently handle large-scale 
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infrastructure inspections, such as bridge inspections. By integrating CBAM with YOLOv5, 

the feature extraction capability of YOLOv5 is further improved, resulting in enhanced 

detection accuracy of CBAM-YOLOv5. 

 

 

 

 

 

 

 

 

 

 

Figure 4: (a) Original low-light images (b) Detection results obtained by CBAM-YOLOv5 in the 

enhanced images 

4. Conclusion 

The paper introduces a novel approach for detecting defects in low-light environments, 

specifically in under-bridge regions. UAVs are employed for capturing low-light under-bridge 

images owing to their agility in the air and high-resolution image acquisition system. In general, 

AI algorithms cannot accurately detect low-light images (LLIs) captured under bridges due to 

factors such as high noise levels, low contrast, and reduced visibility. Therefore, the acquired 

LLIs must be enhanced and denoised prior to the defect detection process. The image 

enhancement algorithm utilized in this study is Zero-DCE, which can enhance low-light under-

bridge images without requiring paired images. The denoising algorithm employed is BM3D, 

a classical and robust technique for reducing image noise. The introduction of CBAM, an 

attention mechanism, improves the feature extraction capabilities of YOLOv5. The article 

compares the performance of various detection models and finds that the CBAM-YOLOv5 

detection algorithm outperforms other classical detection algorithms in detecting cracks under 

bridges by 2.2%-8.1%. This article offers valuable insights into the implications of defect 

detection in low-light environments, highlighting its potential for the future of civil 

infrastructure inspection. 
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