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Abstract. Industry Foundation Classes (IFC) files are commonly used for data exchange of Building 

Information Models (BIMs). Due to the equivalent transformations in the graph structure of IFC 

data, it is a challenge to perform version comparison and incremental storage on IFC files. In this 

paper, an IFC normalization method is proposed, which can reduce the influence of the equivalent 

transformations, so that the normalized IFC file can be directly used in Git-like tools for version 

comparison and incremental storage. The algorithm is also designed for getting stable results when 

running on multi-threads. Experiments show the efficiency of the algorithm and its potential in 

Common Data Environment (CDE) applications. 

1. Introduction 

Building Information Model (BIM) is the digital representation of building projects and built 

assets in the construction industry. The ISO-19650 standard recommends BIM-based 

information management in the life cycle of a built asset, which includes the design, 

construction, and operation phases. During the life cycle, the BIM data is created and edited 

continuously by multiple parties, and information is accumulated in multiple stages of the whole 

construction process. The Common Data Environment (CDE) is a type of information system 

for sharing and coordinating BIM data among multiple parties, for realizing the BIM-based 

information management. Version control is an important function of the CDE, in order that 

the BIM data can be iteratively modified and synchronized between multiple parties, and the 

historical changes of data can be tracked. 

The Industry Foundation Classes (IFC) data model is commonly used for BIM data exchange. 

The IFC schema defines the classes of data nodes for representing various facets of information 

such as product types, geometry, properties and relationships. The data nodes form a directed 

acyclic graph (DAG) structure. DAGs are without cycled references, and the data of every node 

is determined by a subgraph rooted with the node. The graph is serialized into ASCII text rows 

for data storage in hard drives and data transmission through the internet. During the whole 

process of a construction project, the BIM data can reach tens of gigabytes or more. Such a 

large amount of data needs to be iteratively modified and synchronized between multiple parties. 

If the complete IFC files are stored and exchanged for each version, the disk space occupation 

and the time usage for transmission will be large. Therefore, it is of great value to implement 

version comparison and incremental storage for BIM data. 

Currently, in the information technology industry, various tools like Git and SVN are 

commonly used in software programming projects for version control, incremental storage and 

code synchronization. There are also mature online platforms developed based on such version 

control tools, which are widely used for the collaboration of multiple software developers. 

However, although the IFC file is also in a text format, such Git-like version control tools can 

not be directly used on IFC files. One important reason is that the IFC schema is defined in a 

graph structure, but the current version control tools focus on the serialized linear file contents. 
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Due to the equivalent transformations in the IFC file, an identical graph structure may be 

serialized into totally different text files, which brings problems for Git-like tools to compare 

the IFC data versions.  

Several related studies have tried to develop new version comparison and incremental storage 

tools specifically for the graph structure of IFC data. However, on the one hand, the space and 

time efficiency of graph-based incremental storage is still a challenge; on the other hand, there 

is still a lot of work to develop new user-friendly graph-based version control systems that is 

comparable with the mature Git-based platforms like GitLab. 

To address this issue, the idea in this paper is to propose a normalization algorithm for the IFC 

data. Data normalization is a preprocessing step to transform the data into a standardized form 

so that the normalized data can better fit the subsequent calculation or analysis. The proposed 

IFC normalization algorithm tries to uniformly serialize the graph structures into linear text 

files, so that the text-based version control tools can identify the true changes in the normalized 

IFC files, which makes it possible to use online version control services for recording the 

version history and synchronizing data with other users. 

2. Related Work 

2.1 Common Data Environment for Synchronization and Archiving of BIMs 

According to the ISO-19650 standard, CDE is the center of the information management 

workflow for buildings and infrastructures. The workflow is about the accumulation of data 

through the phases in the life cycle, the exchange of data between heterogeneous systems, and 

coordination between multiple parties. The CDE system acts as a single source of BIM data for 

all parties, and the ability to keep track of the information transactions is defined as an important 

feature of the CDE. For CDE systems, the efficiency of data synchronization, the traceability 

of history archives, and the cost of storage are several major challenges (Tao, et al., 2021; 

Jaskula, et al., 2022). 

Several CDE implementations based on different technology stacks have been proposed. The 

OpenCDE API project (buildingSMART, 2019) tries to provide a standard specification for the 

behavior of CDE implementations, including authentication, data transferring and 

synchronization. According to the OpenCDE API, centralized and distributed CDEs can be 

implemented. A centralized CDE can be based on a file server to store the versions of models, 

documents and issues, then the end-users can access and update the central data through HTTP 

API requests (Preidel, et al., 2017; Patacas, et al., 2020). One possible implementation of a 

distributed CDE is based on the Solid ecosystem (Werbrouck, et al., 2019; Senthilvel, et al., 

2020), through which the users can store the data in their own servers, and the remote users can 

access the linked data sources with distributed authentication. Another idea for distributed CDE 

is based on the IPFS (InterPlanetary File System), which incrementally archive and share the 

data in peer-to-peer network, and records hash indices of data versions into blockchain 

transactions (Tao, et al., 2021). More information of related studies on CDE applications may 

refer to the literature review (Jaskula, et al., 2022). 

2.2 Comparison Algorithms for BIM Versions  

The graph structure of the IFC data needs to be serialized into a linear file format for storage 

and transmission. The most used file format for the IFC schema is based on the ISO 10303-21 



 

 

standard. The data nodes are serialized into text rows, and a node can be referred to by other 

nodes with the integer row ID. When serializing the graph structures, the following equivalent 

transformations may occur. 

⚫ Storage order change: the data rows are shuffled in the IFC file, or the values in an 

unordered set are shuffled. 

⚫ Row ID replaces: the integer ID of a row and all its references in the file are replaced with 

another integer value. 

⚫ Redundant nodes: identical nodes or identical node trees repeat several times in the file. 

Due to the equivalent transformations, an identical graph structure may be serialized into totally 

different text files, which makes the text-based comparison tools fail to identify the true changes 

between versions of IFC files. Aiming at the challenges, several studies have proposed graph-

based comparison algorithms for BIM versions, in order to realize more efficient storage and 

transmission of BIM data. 

One idea is to extract information from the IFC file and store it in some other data structures 

for version comparison. The ObjectVCS method (Firmenich, et al., 2005; Nour, et al., 2006) 

extracts necessary information from the IFC file and reorganizes the data of each object into an 

XML file named with the GUID of the object. When the BIM data is modified, the extracted 

data files are updated so that the modification can be tracked. A similar strategy is also used in 

the Speckle system (Poinet, et al., 2020), which implements the version control for BIM data 

based on the extracted JSON data structure. Comparing the extracted information is a pragmatic 

way to implement version control for BIM data, but it may be problematic to restore the whole 

original IFC file from the extracted data files, which limits the use cases of such methods.  

Another idea is to compare the BIM data based on the graph structure of the IFC schema. One 

graph-based version control algorithm (Esser, et al., 2022) compares the IFC graph data by 

matching the maximum common subgraphs on two versions of the graph data, so that the 

modifications over the graph structure can be identified. Based on the comparison, graph 

patches can be generated to synchronize the graph data changes between multiple parties. 

Another graph-based BIM incremental storage system (Li, et al., 2022) is based on the IFCdiff 

algorithm (Shi, et al., 2018) for content-based comparison of IFC data nodes. IFCdiff calculates 

the hash string of each data node from the content of the whole subgraph rooted with the node, 

and the result hash string is invariant under the equivalent transformations listed above. As a 

result, the set of all hash strings from the IFCdiff algorithm can be used as a reliable identifier 

of an IFC file, and the versions can be compared by subtracting two sets of hash strings. 

The graph-based version control for IFC is able to identify the true changes in the BIM data. 

However, in order to compare a new version of graph data with the previous versions, the 

current methods rely on persistent databases (such as Neo4j and MongoDB) to store the graph 

structure, node indices and hash results. In a scenario with multiple users, everyone needs to 

synchronize the database first before comparing a new version of BIM data, which may limit 

the efficiency and flexibility in distributed applications. 

Although faced with challenges, it is still an attractive idea to record and share IFC file versions 

in Git-like tools. The “Native IFC” specification (Bruno, 2022) is proposed as an initiative for 

BIM software tools to realize IFC version control on Git-like tools. The Native IFC 

specification requires that: (1) the numeric row ID of a data entry must keep the same in each 

edition; (2) the attribute changes must be written in-place; and (3) the IDs of deleted entities 



 

 

must not be reused in later versions. This is a strict but still possible specification for software 

tools directly editing the IFC data structure. However, for most other BIM tools that need to 

convert data between another data schema in exporting and importing IFC files, the Native IFC 

is much more difficult to be implemented. 

In this paper, the idea is that although the exported IFC file may be different in text, an IFC 

normalization algorithm is able to merge the redundant nodes and to reorganize the rows and 

numerical IDs into a stable equivalent form. As a result, the true modifications can be identified 

by Git-like tools. The proposed normalization algorithm can be performed independently on 

any single IFC file without a persistent database to store the historical hash results. In a scenario 

with multiple users, the normalization can be performed on every single device, which makes 

it possible to realize BIM-based collaboration on mature Git-like version control platforms. 

3. The Parallel IFC Normalization Algorithm 

In this section, the parallel IFC normalization algorithm is introduced in detail. Inspired by the 

IFCdiff algorithm, the proposed algorithm is also based on the hash calculation of layered data 

nodes. The basic idea is to return integer hash codes rather than hash strings for each data node. 

By assigning content-based integer hash codes as row IDs, the data rows can be sorted and 

compared in version control systems for text files.  

The algorithm for calculating the hash strings and integer hash codes for IFC data nodes in the 

graph structure is introduced in section 3.1. The “prefix spaces” for resolving hash collision of 

short integer hash codes in parallel is introduced in section 3.2. The steps of the parallel IFC 

normalization algorithm are presented in section 3.3. Some special strategies for better dealing 

with the data in the IFC schema are introduced in section 3.4. 

3.1 Calculating Hash Strings and Hash Codes for Layered Data Nodes 

In the proposed method, both long hash strings and short integer hash codes are used for the 

IFC data nodes. The long hash strings are reliable identifiers of contents, and the short integer 

hash codes are used for assigning locations in linear file storage. 

The calculation of hash strings is based on the IFCdiff algorithm, which calculates the hash 

string of a node according to the content of the subgraph rooted with the node. The nodes in a 

DAG structure can be organized in layers according to the reference edges between the nodes. 

The bottom layer is composed of all leaf nodes. Each leaf node has only pure literal values but 

does not refer to other nodes. Marking the bottom layer as layer 0, the other nodes are divided 

into layers by the following rule: if the maximum layer of the nodes that one node refers to is 

layer 𝑖, then the layer of the current node is 𝑖 + 1.  

An example of layered hash string calculation is shown in Figure 1. The hash calculation of 

low-level nodes is performed first, and the hash strings of the referred low-level nodes are 

substituted into the contents of high-level nodes for obtaining the hash strings of the high-level 

nodes.  A certain hash function like SHA-256 is called to obtain the hash strings of nodes.  

Using the hash string as input, some commonly used hash functions can be called to fast map 

the string into an integer hash code (Estébanez, et al., 2013). In our implementation, the DJB 

function is used. Let 𝑐𝑖 be the ASCII value of the 𝑖-th character in a string, and hash0 = 5381, 

the hash code is iteratively calculated as: 

hash𝑖+1 =  hash𝑖 ∗ 33 + 𝑐𝑖 . (1) 



 

 

 

Figure 1:   Example of layered hash string calculation. 

3.2 Hash Collision Resolution in Prefix Spaces 

When assigning the objects to an integer-indexed hash table with a certain capacity, collision 

resolution must be considered. Once a location is occupied by a previous object, the object 

needs to jump to the next location until a free location is found. In our implementation, the 

simple linear probing method is used, i.e. the object always goes to the succeeding location. 

Due to the hash collision resolution, the order of scanning the input objects will affect the result 

of the assigned locations. This becomes a major challenge when trying to assign the hash codes 

in parallel, since the order of the input objects is likely to be shuffled in different runs. Aiming 

at the challenges of stable hash collision resolution in parallel computing, this algorithm applies 

a mechanism of pre-allocation of prefix spaces, so that hash collision can be stably resolved 

within each prefix space in single thread, and the calculation of all prefix spaces can be 

performed in parallel. 

A prefix space is a node container with a constant capacity value 𝑉, and each container has a 

unique integer prefix value 𝑝. Inside a prefix space, each node is assigned with a unique integer 

suffix 𝑠, which is less than 𝑉. The whole hash code of a node is calculated as 𝑝𝑉 + 𝑠, which 

ensures the global uniqueness of the hash code in the graph. When using 32-bit hash code, the 

maximum number of prefix spaces is bound by 𝑈 = floor(232/𝑉), which is the maximum 

allowed value for 𝑝.  

For each type of node, several prefix spaces are allocated according to the total number of nodes 

of this type. If the number of nodes of a certain type is 𝑛, the number of allocated prefix spaces 

𝑚 should be 𝑚 ≥ ceiling(𝑘𝑛/𝑉), in which 𝑘 is a constant spare rate greater than 1.0. The spare 

rate helps to reduce the probability that the nodes dispatched to the same prefix space will 

exceed the capacity of the prefix space, and also helps to reduce the workload in hash collision 

resolution. In our implementation, the spare rate is set to 2.0. A detailed discussion of the spare 

rate is provided in section 5.1. 

3.3 The Steps of Parallel IFC Normalization 

The proposed algorithm is with the following steps. 

(1) Node layering and parallel hash string calculation. According to the method introduced 

in section 3.1, the IFC nodes are layered to perform the hash calculation. Considering that each 

node only refers to the nodes in lower layers, and the nodes in the same layer do not refer to 

IFCCARTESIANPOINT((354.,-83.,350.));

IFCAXIS2PLACEMENT3D(1a06d9580f86dcfd…,$,$);

Layer 0

Layer 1

Layer 2 IFCLOCALPLACEMENT($,2a130d63fca27feb…);

2a130d63fca27feb…

IFCWALL('afc0b946',…,c6bf966a43830eba…);Layer 3 0cf23bd9407d7b95…

IFCRELDEFINESBYPROPERTIES('1$t0jAP15',…,0cf23bd9407d7b95…); b1841a7fff67515e…Layer 4

1a06d9580f86dcfd…

c6bf966a43830eba…

Hash string

(128bits or 256bits)Composed data

1050742828

236942248

344900438

1195523577

1827894300

Hash code
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each other, the nodes in the same layer can be processed in parallel. With the calculated hash 

strings, redundant nodes in the graph can be merged, so the total number of nodes in the output 

normalized file may be less than the original file.  

(2) Initializing the prefix spaces. The number of prefix spaces 𝑚 is decided for each node type, 

and the summation of all 𝑚 values should not exceed the upper bound 𝑈. To decide the prefix 

codes for the prefix spaces, all the prefix spaces are named with a string in the format 

“TypeName_SerialNumber”, for example, “IfcWall_0”, “IfcWall_1”, “IfcWall_2”, etc. The 

names are sorted, and an integer hash code can be calculated for each name with the hash 

function in Eq. (1). The prefix code is calculated with the hash code modulo 𝑈, and linear 

probing is used to find a free prefix code if the calculated prefix code is occupied. The algorithm 

ensures that the same node type will always be assigned to the same prefix spaces in multiple 

runs, and the allocated prefixes are stable within a reasonable range of modification of the input 

IFC file. A detailed discussion of the stability of prefix allocation is provided in section 5.2. 

(3) Dispatching nodes to prefix spaces. With the integer hash function in Eq. (1), the hash 

codes for all the nodes can be calculated according to the hash strings. With the hash code 

modulo the corresponding 𝑚 value of the node type, the nodes are dispatched into the prefix 

spaces. This step ensures that the same node will always be assigned to the same prefix space 

in multiple runs, and possible hash collision will only occur within the same prefix space. 

(4) Suffix assignment in each prefix space. The suffix assignment calculation of all prefix 

spaces can be performed in parallel, and inside each prefix space, the nodes are sorted for stable 

hash collision resolution. The nodes are sorted according to the integer hash codes, and if some 

nodes are with the same hash code, they are compared according to the full hash strings. After 

sorting, the suffix is obtained with the hash code modulo the capacity 𝑉. If the suffix is already 

occupied by a previous node, the integer hash collision is resolved by linear probing.  

(5) Reference update and save. The new row ID is decided by linking the prefix 𝑝 and suffix 
𝑠 as 𝑝𝑉 + 𝑠, and then the references of the node in the whole graph are updated. In exporting 

the result IFC data, all rows are sorted according to the new row IDs. Since the row ID is 

assigned according to the content of the subgraph of each node, if the content of the subgraph 

is not changed, the data rows are likely to present in the same locations in the result IFC file, so 

that the text-based comparison and version control tools can identify the changes correctly. 

3.4 Special Strategies for Better Handling IFC Schema 

The proposed normalization algorithm in this paper is supposed to be applicable not only to 

IFC but also to various data schemas in the DAG structure. However, the following special 

strategies for IFC schema are implemented to obtain better normalized IFC files for getting a 

more reliable version comparison. 

(1) Dealing with unstable GUIDs. The current IFC exporting tools can usually keep 

unchanged GUIDs for IfcElement nodes in multiple runs, but for other types of nodes (such as 

IfcSpatialElement, IfcObjectType, IfcProperty and IfcRelationship), the GUIDs may be 

unstable. To address this issue, in our implementation, the GUIDs for such types of nodes are 

allowed to be re-assigned by encoding the content-based hash strings into GUIDs. 

(2) Dealing with unstable “IfcOwnerHistory”. Many current IFC exporting tools write 

different timestamps into IfcOwnerHistory nodes in multiple runs, which causes hash string 

change of all referring IfcRoot nodes, hence the result row IDs are also changed. In our 

implementation, two optional strategies can be chosen to address this issue. One option is to 



 

 

ignore the IfcOwnerHistory references on calculating the hash strings, and the references are to 

be added back finally on saving the normalized IFC file. Hence every referring node has 

unchanged row ID, but only in-place reference change to the IfcOwnerHistory. Another option 

is to drop all references to IfcOwnerHistory, which may result in even fewer changed rows. 

(3) Dealing with important inverse edges. IFC schema is defined as a DAG structure. Some 

information is accessed via the inverse edges, but such information is not included in the hash 

string calculation. In some special cases, the ignorance of some important inverse edges may 

cause unwanted merge of nodes, which results in confused data in the normalized IFC file. An 

example case is shown in Figure 2. The IfcTriangulatedFaceSet nodes #101 and #201 are with 

the same hash string, which means that they are in the same shape. But the two nodes are 

assigned with different colors via “StyledByItem” inverse edges by nodes #103 and #203, 

respectively. Since the hash strings of #101 and #201 are the same, they will be identified as 

redundant nodes and merged into one node, which results in confused color assignment in the 

normalized file. To address this issue, in our implementation, the “StyledByItem” is marked as 

a type of “important inverse edge”, and such edges are used to update the hash strings at the 

end of hash calculation, so that the nodes #101 and #201 will keep separated in the output. 

 

Figure 2: An example case of the important inverse edge “StyledByItem”. 

4. Experiments 

In this section, two experiments are performed to show the feasibility and efficiency of the 

proposed normalization algorithm in IFC version control. The experiments are performed on a 

PC with 3.19GHz 16-core CPU and 128GB memory.  

(1) Version control of normalized IFC file versions on Git. A series of IFC file versions are 

normalized using the proposed algorithm, and committed to a Git repository. The changes in 

storage size are recorded, and the time consumptions in normalization are compared. The 

original model is an Autodesk Revit file (.rvt) with 115MB. The tested IFC file versions are as 

follows. 

⚫ V0: exporting the IFC file from the original .rvt file. 

⚫ V1: exporting the IFC file again from the original .rvt file. 

⚫ V2: removing 5 objects and adding 5 new objects on the .rvt file, then exporting to IFC file. 

⚫ V3: changing 50 property values in-place on the exported IFC file in V2. 

IfcStyledItem
#103

hash: d486dfbd...

IfcTriangulatedFaceSet
#101

hash: 79ec1de9...

IfcTriangulatedFaceSet
#201

hash: 79ec1de9...

IfcCartesianPointList3D
#102

hash: 172c7f8f...

IfcCartesianPointList3D
#202

hash: 172c7f8f...

IfcStyledItem
#203

hash: ba19e9c3...

Coordinates Coordinates

StyledByItem

Item

IfcSurfaceStyle “Green”
#104

hash: f4a2ba60...

IfcSurfaceStyle “Red”
#204

hash: ee38e4d5...

StylesStyles

StyledByItem

Item



 

 

Table 1 shows the comparison of Git repository changes in committing the original and 

normalized IFC file versions, respectively. The algorithm is set as “drop references to 

IfcOwnerHistory”, and all the “.git” sizes are recorded after executing the “git gc” command. 

The results show that the normalization algorithm helps Git identify the true changes, and also 

reduces the repository size in incremental storage. From V0 to V1, two timestamp changes in 

header and in “IfcOwnerHistory” are correctly identified. From V1 to V2, the 5 removed and 5 

added “IfcElement”s with related representations and properties are identified as row changes 

by Git. From V2 to V3, in the case of in-place change in IFC, the row changes increase after 

normalization since the nodes referring to the changed nodes are also involved. 

Table 1: Comparison of Git repository changes for original and normalized IFC file versions. 

Versions 

Original IFC file Normalized IFC file 

IFC file 

size (KB) 
Rows 

Row 

changes 

“.git” size 

(KB) 

IFC file 

size (KB) 
Rows 

Row 

changes 

“.git” size 

(KB) 

V0  28,861  297,735  /  4,233   14,131  110,108  /  2,712  

V1  28,861  297,735  
+18,659 

-18,659 
 4,702   14,131  110,108  +2 -2  2,713  

V2  28,837  297,447  
+295,339 

-295,627 
 8,438   14,119  109,985  +166 -289  2,720  

V3  28,837  297,447  +50 -50  12,174   14,119  109,985  +136 -136  2,733  

(2) Efficiency of the algorithm with different speeding-up strategies. The normalization 

algorithm is tested on several larger IFC files to show the efficiency of the algorithm. Table 2 

lists the time usage of normalizing 4 IFC files in different sizes. The time for loading the files 

and writing the normalized files to disk is excluded. The results show that the algorithm can 

finish normalizing medium-sized IFC files in several seconds, and finish normalizing large IFC 

files with around 1GB in less than 1 minute. When running in multi-threads, the algorithm can 

have around 30% speed-up compared with single-thread and can obtain stable results. 

Table 2:  Time usage of normalizing 4 IFC files in different sizes. 

File ID 
Original IFC 

file size (KB) 

Normalized IFC 

file size (KB) 

Time usage (s) 

multi-threads single-thread 

1 53,483 22,978 1.40 2.25 

2 197,851 67,634 4.90 7.85 

3 861,193 378,190 33.09 46.88 

4 1,705,112 686,523 56.66 86.58 

5. Discussions 

5.1 Setting the Spare Rate 

The spare rate 𝑘 introduced in section 3.2 is applicable for a node type when the corresponding 

number of prefix spaces 𝑚 > 1. The nodes are almost randomly allocated into the prefix spaces, 

so there is a chance that the number of nodes allocated into a prefix space exceeds the capacity 



 

 

𝑉  in an extremely unbalanced allocation. On assigning 𝑛  nodes into 𝑚  prefix spaces, the 

number of assigned nodes in a prefix space follows the binomial distribution 𝐵(𝑛, 1/𝑚). Since 

𝑛 is large, the binomial distribution can be approximated with the normal distribution 𝑁(𝜇, 𝜎2), 

where 𝜇 = 𝑛/𝑚 and 𝜎2 = 𝑛(𝑚 − 1)/𝑚2 . With the approximation, the probability that the 

number of nodes exceeds the capacity 𝑉 is the area to the right of 𝑧 =  (𝑉 − 𝜇)/𝜎 in a standard 

normal distribution. Let Φ(𝑥) be the integral of the standard normal distribution curve, the area 

to the right of 𝑧 is 1 − Φ(𝑧). By substituting 𝑚𝑉 ≥ 𝑘𝑛 according to 𝑚 ≥ ceiling(𝑘𝑛/𝑉), the 

formula can be transformed to  

𝑧 =
𝑚𝑉−𝑛

√(𝑚−1)𝑛
 ≥ (𝑘 − 1)√𝑛/(𝑚 − 1) . (2) 

So for a certain prefix space, the probability of exceeding the capacity is not greater than 1 −

 Φ((𝑘 − 1)√𝑛/(𝑚 − 1)) . A larger 𝑘  value will reduce the probability of exceeding the 

capacity of a prefix space, but the total number of nodes in the whole graph will be reduced to 

less than 232/𝑘. When 𝑘 = 1.0, i.e. no spare for a prefix space, since Φ(0) = 1/2, one prefix 

space has half the chance to exceed the capacity. In our implementation, the spare rate is set as 

𝑘 = 2.0 , and the probability of exceeding the capacity is now 1 − Φ(√𝑛/(𝑚 − 1)) . 

Considering that 𝑛 ≫ 𝑚, the probability can be reduced to very small, so 𝑘 = 2.0 is a proper 

setting. As a backup operation, the nodes will be moved to the succeeding prefix space if the 

target prefix space is already full (which never happens in our experiments). 

5.2 Stability of Prefix Allocation 

In the proposed algorithm, each node type is assigned with 𝑚 prefix spaces, and the nodes are 

dispatched according to the hash codes modulo the 𝑚 value of this node type. When the IFC 

data is modified from a previous version, if the number of nodes changes in a reasonable range 

that the 𝑚 values for all types do not change, the allocation of prefix spaces and the dispatching 

of nodes will be stable. But if the 𝑚 value of a certain type is changed, the nodes of this type 

are likely to be dispatched to different prefix spaces, and the final row IDs will be changed. 

Sometimes the change of 𝑚 of a type may cause the change of a prefix code owned by another 

type, due to collision resolution in initializing the prefix spaces. 

If 𝑚 is directly set as 𝑚 = ceiling(𝑘𝑛/𝑉), in the case when the 𝑛 value (the number of nodes 

of this type) is close to integer times of 𝑉/𝑘, the 𝑚 value will be changed once the 𝑛 value 

crosses the “stair edge”. In order to reduce the frequency of 𝑚 changing, some techniques can 

be used. One simple way is to increase the capacity 𝑉, so that the intervals are enlarged. Another 

possible way is to scale 𝑚 up by a non-linear function, such as setting 𝑚 as the first value in 

the sequence {1, 2, 4, 8, 16 ...} that is greater than ceiling(𝑘𝑛/𝑉). The change of 𝑚 only makes 

trouble in the text-based comparison. When such a case happens, the IFC file is still well-

formed, and the comparison method by subtracting the sets of all hash strings is still applicable. 

6. Conclusion and Future Work 

The IFC normalization algorithm can stably reorganize the rows and references, so that the true 

modifications can be correctly identified by Git-like tools. The proposed method shows its 

potential for efficient incremental storage in CDE applications. In the future, the Git-based 

collaboration for IFC is to be further studied, including automatic branch merging and 

interactive conflict resolution in the workflow involving multiple users. 
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