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Abstract: Automated Compliance Checking (ACC) in the Architecture, Engineering, and
Construction (AEC) industry can significantly improve project delivery efficiency. This
research introduces an early application of Generative Pre-trained Transformer (GPT)
models for ACC, requiring no additional domain knowledge or term explanation. Our
method involves direct input of building design specifications and corresponding codes
into the model, guided by a task-specific prompt. The GPT models then generate
compliance results. Initial tests on an artificially generated dataset yielded up to 91%
accuracy, demonstrating the model's effectiveness. As an early adopter of applying Large
Language Models (LLMs) to AEC challenges, our work offers a practical workflow and
dataset for others seeking to leverage GPT in this field. The full paper will discuss
potential limitations and challenges of this application.

Introduction:

Compliance checking happens consistently during the entire project execution in the
Architecture, Engineering, and Construction (AEC) industry. The traditional manual
compliance checking method is time-consuming, unstable, and costly, which is critical to
improve performance including efficiency, accuracy, ease to use, and generalization during
the process (Malsane et al., 2015; Zhang et al., 2023). The Automated Compliance Checking
(ACC) process is recognised as an effective method to solve the issues of the manual
compliance checking process (Beach et al., 2015; Soliman-Junior et al., 2021).

Five years of research related to ACC are reviewed in this study. With the advantages of
interoperability and flexibility, hard coding and ontology under Building Information
Modelling (BIM) environment become common ways to reach the ACC process (Choi et al.,
2014; Melzner et al., 2013; Tan et al., 2010; Zhang & El-Gohary, 2017). However, the
existing methods have limitations on automation as the extracting of logic or semantic
representation from the text information is highly dependent on manual work, which causes
issues in that the semantic web is built with very limited generalisation for each different
representation generated from different projects, companies, institutions, or individuals that
require the manual processing of semantic representation converting (Bloch & Sacks, 2018;
Xu & Cai, 2020; Zhang et al., 2022; Zhong et al., 2019). This process could cause duplication
of work and conflict among different semantic webs from parties.

In order to further enhance the degree of automation, LLMs are applied to execute ACC tasks.
In this research, an LLMs-based method of ACC for building design specifications is
developed which can automatically generate logic by Prompt Engineering (PE); an artificially
generated domain knowledge of building design specification compliance checking prompt
dataset is built for driving LLMs; the state-of-art GPT-3 and GPT-3.5 LLMs are applied and
evaluated regarding on this scenario.
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Rather than extracts text information from models through specific forms of technology, the
workflow ACC process in this research starts from processing prepared text dataset as in the
most forms of BIM program, there are common ways to automatically convert building
design specifications from typical drawings of CAD or information models into pure text
format including “.txt”, “.doc”, “.xls”, and “.csv” etc. The LLMs have the reliable capability
of generalization which can be applied to process pure text information in most of the forms.

Section 2 describes the methodology, section 3 explains the design of experiments, section 4
concludes the results and the research.

1. Methodology

This research adopts 2 types of GPT-based LLMs to evaluate the core function and the best
capabilities during the task implementation. In general, the core function of the LLMs is text
generation according to the given text so-called “Prompt”.

1.1 General design
Figure 1 presents the general design of implementing research. According to the architecture
of the transformer, the basic scenario of the GPT-based models could be considered as
sentence prediction from context. So the first step to drive the LLMs is generating appropriate
prompts based on the target scenario. In general, there are 3 types of prompts for LLMs, zero-
shot learning, one-shot learning, and few shots learning(Saravia, 2022), the details of the
prompt design are explained in Session 4. Experiment. When the prompts have been prepared,
they are fed in LLMs separately in 2 different ways, one way is directly feeding in complete
models, and the other way is applying fine-tuning process before the test. Both of the models
produce completions (or results) based on a prompt. According to the qualities of completions,
the models’ performance can be assessed. Furthermore, both performance of prompt and
LLMs can be analyzed through variables controlled during the experiment. Finally, according
to the analyses of the prompts and models, the prompts can be modified, and correspondingly
the models with the best performance are applied for further research.

Figure 1: the design of the research implementation.
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Figure 2 presents the detailed processing procedure for realizing LLMs-based ACC through
prompt engineering. According to the figure, 2 types of models are applied, GPT-3-based
fine-tuned models and GPT-3.5-based complete models. As reinforcement learning methods
are integrated, GPT-3.5-based models present a better performance in multi-tasks.
Consequently, they can realize deep analysis to large complex (maximum 4096 tokens in
GPT-3.5 based models) contexts without fine-tuning. However, GPT-3 base models don’t
have such powerful language processing performance in general, but the models can be
boosted through the fine-tuning process to reach the same level of performance.

Figure 2: the flow chart of automatic compliance checks through LLMs

For the two main types of models：

GPT-3 based models: The dataset of prompt includes hundreds of samples with organised
structure pairs: “prompt with samples of instructions, building design regulations’ clause, and
completion with samples of checking results”.
GPT-3.5 prepared models: This type of model is capable of implementing the tasks proposed
through prompt, which provides detailed instructions, and several precise samples to limit the
form of generated results.
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As both types of models complete essential preparation, their performance of the specific task
can be evaluated through unified prompt tests. There are 2 different ways to evaluate the
models from different perspectives through prompt designing.
The first is to build simple, organized, structured prompts which only have only one sentence
of the instruction following no example or few examples. This task evaluates LLMs’ basic
capacities of learning from context and tries to figure out the boosting capacities of fine-
tuning process. Consequently, the organized structure of the test prompts are the same as the
fine-tuning prompt. This task is assumed to be completed by most of the tasks hence batch
processing is implemented in this task. The generated results are divided into 2 types, and
accordingly, a confusion matrix is built. Finally, a comprehensive quantitative performance
evaluation in this scenario is provided.
The second is to build large, complex, naturally structured prompts which have a more similar
form to general design documents. This task generally requires LLMs to learn more
complicated internal logical connections from instructions and examples and applies them to
completion generating. The capacities of LLMs can be claimed if the task can be realized
precisely.
There are 2 types of experimental forms in this research, for complex large, naturally
structured contexts, the “playground” from OpenAI official website is applied for the test
environment. And API of ChatGPT is applied for batch processing in Python. The generated
results are recorded in an extra column of original data to be converted into a confusion
matrix. Due to space limitations, all of the codes, datasets and row data of the experimental
results can be found at the following link: https://github.com/xiaoyuliu822/GPT-based-
ACC.git.

2. Experiment

2.1 Prompt engineering
According to the definitions, “Prompt” refers to the input of the LLMs (Zhou et al., 2022). A
proper prompt can clearly describe the tasks, including provide clear instructions, give
necessary examples, references, require exact output form etc. In order to realize the ACC
process to building design specifications, a general form of prompt needs to be built for batch
processing through Python.

In this section, the details of the prompt design are explained comprehensively, including
tasks, structures, and contents. As previous introducing, tasks include fine-tuning and unified
tests, structures include natural and organised 2 types, and contents are extracted from HTM
05-02 fire safety codes.

3.1.1 Prompt for fine-tuning
In fine-tuning task, prompts are built into a dataset which contains hundreds of independent
samples, Figure 4 presents the fine-tuning prompt structure of the dataset. These samples
comprise all of the examples of compliance checking to build design specifications under
HTM 05-02 fire safety codes. This process is designed to enhance the capability of GPT-3
based models learning, inference and judgment during implementing compliance checks. The
dataset is divided into the fine-tuning set, validating set, and testing set in a ratio of 8:1:1.
Fine-tuned models are pre-tested on validating set before the unified test. Figure 5 presents
the fine-tuned models’ performance on validating set. There is a confusion matrix and 4



5

indices for each of the fine-tuned models. According to the figure, there are 3 basic statuses in
this task, “negative” means “the requirement is not met”, “positive” means “the requirement
is met”, and “task fail” means “the model produces meaningless results or the model doesn’t
understand the task”. Each row of the matrix represents the statuses of the true value which
are provided by the dataset, there are only 2 rows, “negative” and “positive”, as no
meaningless tasks are provided, which can be seen through the vertical axis. Each column of
the matrix represents the statuses of the predicted value generated by models, the same values
as predictions.
Four main evaluation indices are calculated in validating process, and Chart 1 explains each
element of a confusion matrix:
Accuracy: the proportion of correct predictions out of the total predictions:

� = (��+��)
�

(1)

Precision: the proportion of true positives (“the requirement is met”) out of all the positive
predictions (“the requirement is met”):

� = ��
(��+��)

(2)

Recall: the proportion of true positives out of all the actual positive values:

� = ��
(�� + ��)

(3)

F1 score: the harmonic mean of precision and recall, it is useful when dealing with
imbalanced datasets:

�1 = 2

(1� +
1
�)

(4)

(Goutte & Gaussier, 2005).
TN: True Negative, the true values are negative, and the predicted values are negative.
FN: False Negative, the true values are negative, and the predicted values are positive.
FP: False Positive, the true values are positive, and the predicted values are negative.
TP: True Positive, the true values are positive, and the predicted values are positive.
TF: Task failure, the tasks failed during implementation.

TN01 FN02 TF03

FP11 TP12 TF13

TF21 TF22 TF23

Table 1: Confusion matrix.

The performance of 2 fine-tuned models is presented in Figure 3. A mini validation dataset is
applied, there are 21 samples in the validation dataset, 14 of them are positive, and 7 are
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negative, fine-tuned curie model has better performance than fine-tuned davinci model in this
dataset, and both of the models provide acceptable performance. The fine-tuned models are
prepared after the validating process is complete, and they are provided for further unified
tests with other GPT-3.5 based models.

Figure 3: The confusion matrices of fine-tuning models on the validation dataset.

3.1.2 Prompt for testing
In the testing task, 4 prompts in 2 types are built for different capabilities, as figure 4
presenting, the first 2 prompts adopt an organized structure context, and the second 2 prompts
adopt a naturally structured context.
Test 1: test 1 is the most simplified prompt in this research, it adopts the same organized
structure as the prompts in fine-tuning process, the prompt is divided into several parts with
symbolled separators, and completion is required to produce results from LLMs, no examples
are given, true results are provided for comparison after generating. The LLMs need to
produce results directly. This prompt design is applied mainly for quantifying models’
performance. Through a series of evaluation indices, including accuracy, precision, recall, F1
score and confusion matrices, the model’s performance can be precisely evaluated and
visualized. This would directly prove that the GPT-3 models’ capability can be boosted
closely to a GPT-3.5 model.
Test 2: the prompt of test 2 adopts a similar organized structure, this is an extension of test 1,
in which all the symbolled separators are cancelled in prompts and examples are provided to
boost the generalization of the tested models instead. The examples are built as clauses pairs
of fire safety regulations and building design specifications, the true results are given for
learning. The test clauses pair from regulations and specifications are provided with the
following, which requires LLMs to produce the results based on their learning results. The
organized structures of the test prompts are designed to evaluate the GPT-3 based models
considering the models have less capacity compared with the GPT-3.5 models. The capability
of retrieving is not integrated directly into the GPT-3 models. Hence pre-processing
operations are required before implementing the compliance check.
Test 3: the prompt of test 3 adopts a natural structure, though, in this test, no examples are
given. The regulation clauses and corresponding building design specifications are listed
separately, and the LLMs are required to produce the results directly. This task is designed to
simulate the general ACC process in the deployment environment, the LLMs should match
every regulation clause pair from whole documents of regulations and specifications, then
implement the checking process and produce the results.
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Test 4: this prompt of test 4 adopts a natural structure, which means the contexts are designed
closely to the general documents. The instructions are detailed and precise to describe the
scope of compliance checking, in this research, several fire safety regulation clauses and
corresponding building design specifications are listed together in prompts as examples which
helps LLMs to learn the compliance checking process from internal logic connections within
the clauses and specifications pairs. The specified forms of generated completions can help
LLMs to provide required results representations like “0” stands for false, and “1” for true.
Finally, 2 test building design specifications are given to let the LLMs implement the ACC
process. In this test, the LLMs should match the regulation clauses with building design
specifications first, then implement the checking process and produce the results.

Figure 4: The prompt for testing.

2.2 Contents
In this research, clauses of fire safety regulations and responding building design
specifications. Fire safety codes are extracted from Health Technical Memorandum 05-02:
Firecode, fire safety in the design of Healthcare premises (HTM 05-02) (Health, 2015). The
responding building design specifications are generated by the author based on general design
principles from various virtual projects.

2.3 Results

3.3.1 General results

The initial results of the experiments are recorded in Table 2. This is a general review of the
tests’ results, in the chart, “Fail” means the model can’t understand the task and generate
meaningless content, “1” means the model can understand the task and generate results,
though the results may not be correct. All the GPT-3 models represent fine-tuned models, and
GPT-3.5 are prepared models. The tasks of tests 1 and 2 are highly simplified, so the results
can be quantified and evaluated by confusion matrices. Hence the performance of tests 1 and
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2 are presented in Figure 7 and Figure 8. On the contrary, the tasks of tests 3 and 4 are highly
integrated. Moreover, each prompt is required to process multi-tasks. Therefore, tests 3 and 4
cannot be simply identified as classification tasks.

Table 2: Results of the tests

GPT-3.5-
turbo

GPT-3.5-text-
davinci-003

GPT-3.5-text-
curie-001

GPT-3.5-text-
babbge-001

GPT-3.5-
text-ada-001

GPT-3-
Curie

GPT-3-
Davinci

Test 1 Fail Pass Pass Pass Pass Pass Pass

Test 2 Pass Pass Pass Pass Pass Pass Fail

Test 3 Pass Pass Fail Fail Fail Fail Fail

Test 4 Pass Pass Fail Fail Fail Fail Fail

Test 1: Prompt structure: organized, together; Instructions: required; examples: 0

Test 2: Prompt structure: organized, together; Instructions: required; examples: 3.

Test 3: Prompt structure: natural, separate; Instructions: required; Examples: 2.

Test 4: Prompt structure: natural, together; Instructions: required; Examples: 3.

According to Table 2, several essential results can be proved:
 The GPT-3 models (Curie and Davinci) could provide the same level of capabilities as

the GPT-3.5 models when the GPT-3 models are fine-tuned for the specific tasks.
However, the performance of the GPT-3 models is highly dependent on prompt
engineering.

 In the general case, the most capable GPT-3.5 models (GPT-3.5-turbo, GPT-3.5-text-
davinci-003) consistently provide the best performance among GPT models, which
indicates that the inherent improvements in GPT-3.5 models may be more impactful than
the fine-tuning models.

 The GPT-3.5 models show capabilities of generalization, with some models (i.e. GPT-
3.5-text-davinci-003) performing better than GPT-3 models in most tests. This suggests
that the fine-tuning process applied to the GPT-3 models may not be sufficient to
outperform all GPT-3.5 models in building design compliance checking scenarios.

3.3.2 Quantified results

In tests 1 and 2, as the tasks are simplified to multiclassification scenarios, the performance of
the models can be quantified and visualized. Figure 5 and Figure 6 present the confusion
matrices of 6 models’ performance in Test 1 and 2, the matrix of GPT-3.5-turbo can’t be
generated as the OpenAI doesn’t provide GPT-3.5-turbo API reference.

As shown in Figure 5, the models with the best performance are GPT-3.5-text-davinci-003,
GPT-3-curie, and GPT-3-davinci, which provide acceptable accuracy, precision, recall and F1
score in Test 1. Other models (text-curie-001, text-babbage-001, text-ada-001) present low
accuracy and a high ratio of task failures which reveal these models can’t implement the tasks
of compliance checking.
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Figure 5: Confusion matrices of Test 1

In Figure 6, the davinci series model performance (GPT-3.5-text-davinci-003 and fine-tuned
GPT-3-davinci) deteriorated compared with Test 1. On the contrary, other models’
performance, including fine-tuned GPT-3-curie, GPT-3.5-text-curie-001, GPT-3.5-text-
babbage-001, and GPT-3.5-ada-001 are improved, which proves most of the GPT-based
models have a certain degree of generalization ability when the prompts structures are similar.

3.3.3 Deep analysis

Prompts of tests 3 and 4 are more challenging as LLMs are required to analyse documents
which have similar structures to project documents, most of the models failed in these tests,
only GPT-3.5-turbo and GPT-3.5-text-davinci-003 implemented the tasks, and the tests are
not designed to be multiclassification tasks. In that case, the evaluations of the model’s
performance are only based on the generated completions.

In test 3, only GPT-3.5-turbo and GPT-3.5-text-davinci-003 models implement the tasks
which require models to process 3 building design specifications at once, in addition, the
models need to retrieve and match the regulation clauses corresponding to the design
specification.

Based on test 3, test 4 requires models to generate completions in specific forms and give
their explanations, moreover, unnecessary and pointless terms are added to the prompt, and
the building design specification clause no longer corresponds to a single regulation term.
These tasks test the comprehensive capability and robustness of the model. Only GPT-3.5-
turbo and GPT-3.5-text-davinci-003 implement the tasks, though other models don’t
understand the task or generate unsatisfied completions.
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Figure 6: Confusion matrices of Test 2.

3. Conclusion
Large Language Models (LLMs) have demonstrated significant potential in Automated
Compliance Checking (ACC) for building design specifications. Their generalization
capabilities, flexibility, and ease of use can greatly enhance language processing performance
in analyzing complex text files. Through fine-tuning, LLMs can integrate domain knowledge
and provide customization, thus improving ACC automation by directly processing text
documents in natural language, a process known as Prompt Engineering.
Despite their promise, GPT-based models in ACC still have limitations. For instance, fine-
tuning, crucial for enhancing early versions of GPT models, is not applicable to recent models
like GPT-3.5 and later versions. Also, the capacity of current LLMs is limited to
approximately 4000 tokens, requiring careful prompt organization to execute the ACC
process in one go. Moreover, current models can only process single-modality information,
primarily text, highlighting a need for multi-modality models that can process blueprints,
drawings, and models for complete ACC.
This research provides a practical methodology for implementing ACC using LLMs and
offers valuable insights for future LLM deployment in the AEC industry. However, further
developments are needed to address these limitations and fully realize the potential of LLMs
in ACC.
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