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Abstract. Occupational safety in the construction industry is one highly prioritized concern around 

the globe. Accident reports are considered valuable recourses preserving information about 

corresponding risk factors. Many efforts in the literature have demonstrated that deep learning 

models are readily applicable to processing and analyzing narrative reports. However, the 

heterogeneous semantic information was rarely considered. This research utilizes knowledge graph-

based accident analysis to provide a machine-assisted approach for construction accident report 

interpretation. To validate the proposed approach, this research labels 320 crane-related accident 

reports from the US OSHA database and develops a Crane Safety Knowledge Graph (CSKG) as a 

case study. Then, a Heterogeneous Graph Attention Network (HAN) is trained to explore the 

accident features and the importance of various risk factors. Through mapping and clustering the 

accident data points, the results reveal the capability of the proposed approach to learn the accident 

patterns and generate safety rules for construction cranes. 

1. Introduction 

Improving occupational safety is a challenging issue across the globe. In Europe, a total of 3581 

occupational fatal accidents were recorded in the year 2018, where 716 were from the 

construction industry (Eurostat, 2022). In the United States, 154 construction work-related 

fatalities and catastrophes were reported in the year 2022 (Occupational Safety and Health 

Administration, 2023). The situations are even worse in developing countries and one common 

feature revealed by statistical data from different countries is that the construction industry is 

liable for a significant proportion of occupational fatalities and injuries (Mohandes et al., 2022). 

The risk factors leading to construction accidents may have latent interrelations and coupling 

effects that should not be investigated from an isolated aspect. Hence, to promote occupational 

safety in the construction industry towards "Zero Accident Vision", it is vital to identify 

potential risk factors for prevention purposes through comprehensive accident analysis. In this 

direction, it has been an interest of scholars to investigate the causal factors of construction 

accidents by combining expert knowledge and informative accident reports. For instance, 

Dhalmahapatra et al. (2020) put forward an integrated modeling approach for accident data, 

which was based on categorical variables extracted from 179 crane-related incidents and 

numerical values obtained from expert surveys. Recently, this field has gradually broadened to 

deploy deep learning methods to extract information from massive accident reports and provide 

effective and replicable analytics (Sarkar and Maiti, 2020). For example, some research utilized 

Natural Language Processing (NLP) and advanced neural networks to process the textual 

accident data and achieve automatic text classification (Fang, Luo, et al., 2020; Gupta et al., 

2022). However, the heterogeneous semantic information in the accident reports, such as 

features of construction activities, human errors, mechanical problems, and environmental 

hazards, is rarely systematically considered. 

Knowledge Graph (KG) is a technique originating from the development of modular 

instructional systems for education as early as 1972 (Schneider, 1972). Google launched its KG 

in 2012 to enhance Google Search and has brought this term into many areas like 
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recommendation systems (Wang et al., 2019). In knowledge representation and reasoning, KG 

has become an effective tool to retrieve, analyze and visualize heterogeneous semantic 

information. A generic KG is composed of a data layer and a schema layer. The data layer 

contains domain knowledge, utilizing entities, attributes, and relations to represent semantic 

information. And the schema layer integrates information from the data layer into an ontology 

model for logic inference. As a pioneering research work to apply KG in construction safety 

management, Fang, Ma, et al. (2020) utilized computer vision technology to extract knowledge 

for ontology modeling and developed a KG for identifying construction hazards, such as the 

lack of safety harnesses for workers working at height. However, there are limited unsafe 

behaviors identified in the small-scale KG. As noted by Liu et al. (2022), more research on KG-

based accident analysis for construction safety management is needed. 

As exemplified in Figure 1(a) and (b), an accident database can be considered a heterogeneous 

KG. Each accident case is represented as an ontology entity (e.g., the accident entity a1); the 

common accident causations shared by two accidents are represented as heterogeneous 

ontology relations connecting the paired entities (e.g., accident entities a1 and a3 are connected 

via two different accident causations). Heterogeneous graph neural networks (HGNNs) were 

proposed in recent years to capture various semantics in real-world graphs (Xiao Wang et al., 

2019; Fu et al., 2020). As shown in Figure 1(c) and (d), a typical HGNN uses the meta-paths, 

which convey different semantic information, to enlarge the receptive field of each entity in 

passing information to its neighbors. This research proposes a KG-based risk factor modeling 

framework for accident report interpretation. The key contributions are two-fold: 1) In the case 

study, an accident-enabled Crane Safety Knowledge Graph (CSKG) is developed through the 

pre-processing of textual data and the extraction of causal factors from multiple aspects of the 

accident reports. The ontology modeling process can lay a foundation for crane safety 

management and support KG development in other research fields. 2) This research combines 

an HGNN and factor analysis to infer safety knowledge in the CSKG, which contains 

comprehensive information and rich semantics. The risk analysis framework is tested and 

validated as an effective tool that can assist in identifying essential risk factors and recognizing 

accident patterns. 

 

Figure 1: Exemplification of the heterogeneous crane safety knowledge graph (CSKG) 

2. Problem Formulation 

The problem tackled in this paper is to identify essential risk factors and accident patterns by 

extracting information from massive accident reports. The utilization of the textual accident 

data and the problem formulation are introduced below. 

Risk factors revealed in accident reports may include human errors, mechanical problems, and 

environmental hazards, often involving the interrelationships and causations among these 

factors. The current post-accident investigation often emphasizes the risk factors on a case-by-
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case basis, seeking attention to corresponding precautionary measures. However, for different 

accident cases, there is a variety of risk scenarios that present a wide spectrum of on-site 

conditions such as misoperations, malfunctions, and constraints. Hence, the first challenge 

associated with the utilization of textual accident data can be identified as how to properly 

extract and manage the accident information for inference, such as eliciting general safety rules. 

As defined by Gruber, ontology denotes the specification of conceptualization in a formal and 

explicit manner; ontology modeling is the process to model a set of concepts and their 

relationships into ontologies within a knowledge domain (Gruber, 1993). In this research, 

ontology modeling is potentially a promising approach to accommodate the multifariousness 

of different accidents while preserving the generalization ability of the developed KG, 

transforming the unstructured textual accident data into a structured accident database.  

The latent features of accidents (e.g., the importance of various risk factors and the accident 

patterns) preserved in the accident-enabled KG can be learned by an HGNN, which is generally 

comprised of layers for input features, knowledge inference, and output predictions. Referring 

to previous research: 1) one-sentence accident summaries can be used as inputs through word 

embedding. This process utilizes a corpus of text and an embedding method to reconstruct the 

word sequence of accident summaries into a vector space. 2) the prediction of accident 

consequences, represented as accident types, are the expected outputs from model training. This 

process utilizes a Multi-Layered Perceptron (MLP) to train the proposed HGNN and evaluates 

the model through its performance in the learning task of semi-supervised node classification. 

Taking the one-sentence accident summaries as inputs, and the accident consequences as 

outputs, the second challenge in the exploration of textual accident data refers to how to devise 

the hidden layers of an HGNN to automatically extract the heterogeneous semantic information 

without requiring complicated reasoning or decision-making. The Heterogeneous Graph 

Attention Network (HAN), deploying a hierarchical attention framework to encapsulate the 

heterogeneous semantic information, can be considered a well-suited approach to extract 

valuable accident entities and semantics. Combined with clustering analysis, which aims to 

group accident data, hence the accident entities are closely associated with each other in the 

same cluster while separated from those in other clusters. Consequently, accident patterns can 

be recognized from the accident-enabled KG. 

3. Methodology 

Following the research purpose of exploring the importance of risk factors and patterns of 

construction accidents, this research proposes a KG-based risk factor modeling framework for 

accident report interpretation while overcoming the two challenges mentioned above: 1) the 

unstructured textual accident data and 2) the latent accident features preserved in the 

heterogeneous semantic information. The proposed framework is comprised of three steps: 

ontology modeling, construction and implementation of the HAN model, and clustering 

analysis. 

3.1 Ontology Modeling 

Within the context of construction safety, the entities of the accident-enabled ontology model 

are construction accident cases, which contain heterogeneous semantic information that 

specifies the basic information of the involved construction sites, the identified causal factors, 

and the accident consequences. Accordingly, an ontology relation in the model is defined as the 

accident causation that leads to the occurrence of its connected accident entities. Different 

ontology relations convey different semantic information and comprise the schema layer of the 
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heterogeneous KG. A careful interpretation process is then conducted to extract the safety 

knowledge from the narrative accident reports and develop it into the data layer of the 

heterogeneous KG. 

3.2 Construction and Implementation of The HAN Model 

The construction and implementation of the HAN model are described as follows. 

The Node-Level Attention Mechanism. Previous to utilizing the accident information learned 

from the neighbor entities for a specific accident entity, we should notice that different neighbor 

entities may play different roles and bear diverse importance in forming the representation of 

the studied entity. Figure 2(a) shows the structure of the node-level attention mechanism, which 

takes three steps to learn the weights of node pairs under each specific meta-path: 

Step 1: For each attention head K, use the transformation matrix to embed the accident features 

into a common vector space: 

𝑊𝑛𝑜𝑑𝑒ℎ𝑖 = ℎ𝑖
′, (1) 

where ℎ𝑖 is the original representation of entity i; ℎ𝑖
′ is the embedded representation of entity i. 

Step 2: Calculate the normalized weight coefficients for entities 𝑗 ∈N𝑖
𝛷

: 

𝛼𝑖𝑗
𝛷 =

exp (𝜎(aΦ
T ⋅ [ℎ𝑖

′ ∥ ℎ𝑗
′ ]))

∑ exp (𝜎(aΦ
T ⋅ [ℎ𝑖

′ ∥ ℎ𝑘
′ ]))

𝑘∈N𝑖
𝛷

, (2) 

where N𝑖
𝛷

 refers to neighbor entities of entity i under the meta-path Φ ; 𝜎  refers to the 

LeakyReLU function; a𝛷 refers to the vector containing node attention values of node pairs 

under the meta-path Φ; ∥ refers to the concatenation operation. 

Step 3: Under the specified meta-path, generate the embedding 𝑧𝑖
𝛷  for entity i using the 

neighbors' projected features with corresponding weight coefficients: 

𝑧𝑖
𝛷 = 𝜎′ (∑ 𝛼𝑖𝑗

𝛷 ⋅

𝑗∈N𝑖
𝛷

ℎ𝑗
′) , (3) 

where 𝜎′ denotes the ELU function. 

The Semantic-Level Attention Mechanism. In general, each accident entity contains various 

semantic information, reflecting the accident features from a variety of aspects. The semantic-

specific embedding of an accident entity cannot capture the rich semantics. As shown in Figure 

2(b), with the obtained embeddings from each semantic aspect as input, at the semantic level, 

the attention mechanism aims to learn different meta-path weights, fuse information from 

various semantic aspects, and finalize each accident entity embedding through the three steps 

as follows: 

Step 1: Transform the semantic-specific embedding 𝑧
𝑖

𝛷𝑝
 through a one-layer MLP: 

𝑡𝑎𝑛ℎ (𝑊𝑠𝑒𝑚 ⋅ 𝑧
𝑖

𝛷𝑝 + 𝑏) = 𝑧𝑖
𝛷𝑃
′′

, (4) 

where 𝑊𝑠𝑒𝑚 refers to the weight matrix and 𝑏 refers to the bias vector. 

Step 2: Calculate and normalize the weights of different meta-paths: 



5 

 

𝛽𝛷𝑖
=

exp (
1
|𝒱|

∑ 𝑞𝑇𝑖∈𝒱 ⋅ 𝑧𝑖
𝛷𝑃
′′

)

∑ exp(
1
|𝒱|

∑ 𝑞𝑇𝑖∈𝒱 ⋅ 𝑧
𝑖

𝛷𝑃
′′

))𝑃
𝑖=1

, (5) 

where q is the vector containing semantic attention values of node pairs from various meta-

paths between the entity set 𝒱; 𝛽𝛷𝑖
 evaluates the information contribution of the meta-path 𝛷𝑖. 

Step 3: Fuse all the semantic-specific embeddings with the corresponding meta-path weights to 

generate the final embedding 𝑍𝑖 of node i: 

𝑍𝑖 =∑ 𝛽𝛷𝑙
⋅

𝑃

𝑙=1
𝑧𝑖
𝛷𝑙 . (6) 

 

Figure 2: The hierarchical attention structure in the HAN model 

Analysis of The Overall HAN Model. The final embedding of each accident entity is obtained 

by aggregating the embeddings carrying different semantics. For the learning task of semi-

supervised node classification in this research, the labeled ground truths (𝒀𝒍) and the prediction 

outputs from the HAN model of the accident types are utilized to minimize the loss (L): 

L = −∑ 𝑌𝑙 · ln(C · 𝑍𝑙)
𝑙∈𝑦𝐿

, (7) 

where C is the classifier parameter; 𝑦𝐿 and 𝑍𝑙 are the labeled accident entities and embeddings. 

Finally, the final embeddings of the accident nodes (Z), the node weight coefficients (𝛼), and 

the semantic weight coefficients (𝛽) can be obtained. To assess the model performance in terms 

of the accuracy of predicting accident consequences, the micro F1 is computed by calculating 

the numbers of True Positives, False Negatives, and False Positives. 

3.3 Clustering Analysis 

To further explore the accident information preserved in the heterogeneous KG and learned by 

the HAN model, clustering analysis is performed to explore the accident patterns and 

contributing risk factors. This research utilizes the t-distributed stochastic neighbor embedding 

(t-SNE) method to map the accident entities, retaining the information preserved in the high-

dimensional embeddings (Maaten and Hinton, 2008). Afterward, this research compares 

different clustering algorithms based on their performance in partitioning the accident data 

points into clusters. The validity indices (e.g., DBI, DI, and SW) can identify the cohesion of 

data points in the same cluster and their separation from other clusters, and help retain optimal 

clustering results for identifying the accident patterns and eliciting safety rules (Dunn, 1974; 

Davies and Bouldin, 1979; Rousseeuw, 1987).  
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4. Case Study 

Data Collection. Fatality and Catastrophe Investigation Summaries reported by the US OSHA 

were considered in this research. The case study focused on construction crane safety in the 

past two decades. The scope of data collection was hereby specified by using the keyword 

"construction crane" for retrieval on the US OSHA website. Through a careful interpretation 

process, the accident reports not involving crane usage or construction activities were ruled out 

and a total of 320 cases were compiled in the final accident database in this research. 

Ontology-Based Knowledge Extraction. As shown in Table 1, the labeling for the accident 

consequences was following the Top Four construction hazards identified by the US OSHA. 

The basic accident information considered the features of involved construction sites and 

activities. For accident causations, the primary causes were categorized as human errors, 

mechanical problems, and environmental hazards. The original accident narratives were labeled 

from each information aspect and category, determining the corresponding attributes of the 

accident entities. 

Implementation of The HAN Model. Referring to (Xiao Wang et al., 2019), the configuration 

of parameters to implement the HAN model in this research was set and adjusted as follows: 

the learning rate: 0.005; the regularization parameter: 0.001; the dimension of final embeddings: 

64; the number of attention heads: 8; the dropout ratio of attention: 0.6; the ratios of training 

data, validation data, testing data: 80%, 10%, and 10%. An early stopping mechanism was 

adopted to terminate the model training when the decrease in validation loss is not observed in 

100 consecutive epochs. 

5. Results and Discussion 

CSKG in The Construction Industry. For an illustration of a sub-graph of the heterogeneous 

CSKG, the accident nodes and their associations under the meta-path "Operator misoperation" 

(A_HEa_A) are visualized using Gephi 0.10 in Figure 3. There were 16 categories of causal 

factors under this meta-path, connecting their corresponding accident nodes. 

 

Figure 3: The accident nodes connected via the meta-path"Operator misoperation" 

Training Performance of The HAN Model. To investigate the importance of different safety 

concerns, the HAN model was implemented using the 320 datasets. For the task of predicting 

crane accident consequences, the higher accuracy indicates the higher reliability of the model; 

the smaller loss indicates the prediction is closer to the ground truth. As shown in Figure 4, the 

training accuracy was close to 1; the validation accuracy was larger than 0.8. Whereas the 
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training loss was close to 0; the validation loss was smaller than 0.3. The training results 

demonstrated the reliability of the trained HAN model for the sampling accident data. 

 

Figure 4: The iterative process of model training 

Table 1: The aspects of accident information and the corresponding ontology relations. 

Aspects Ontology relations Aspects Ontology relations 

Accident Type 

Fall from the personnel 

basket (AT0) 

Human Error 

Operator misoperation 

(A_HEa_A) 

Fall from the extension 

ladder (AT1) 

Rigger misoperation 

(A_HEb_A) 

Fall from the constructed 

structure (AT2) 

Signaller misoperation 

(A_HEc_A) 

Fall from the crane (AT3) 
Assembly/disassembly 

misoperation (A_HEd_A) 

Struck by loads (AT4) 

Maintenance or 

inspection misoperation 

(A_HEe_A) 

Struck by falling crane 

parts (AT5) 

Mechanical Problem 

Crane collapse 

(A_MPa_A) 

Struck by the moving 

machine (AT6) 

Crane tip-over 

(A_MPb_A) 

Body caught in/between 

(AT7) 

Fall of crane jib/boom 

(A_MPc_A) 

Finger/hand/foot caught 

in/between (AT8) 

Fall/Shift of crane loads 

(A_MPd_A) 

Electrocutions (AT9) 
Malfunction/failure of 

crane (A_MPe_A) 

Basic Information 

Involved Staff (A_IS_A) 

Environmental Hazard 

Poor weather/operation 

conditions (A_EHa_A) 

Work Process (A_WP_A) 
A lack of standard 

procedure (A_EHb_A) 

Project Feature (A_PF_A) 
A lack of clear division of 

work area (A_EHc_A) 

Work Shift (A_WS_A) 
A lack of sufficient PPE 

devices (A_EHd_A) 

Machine Type 

(A_MT_A) 

A lack of sufficient 

inspections (A_EHe_A) 
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Representation of Accident Entities and Weights of Meta-Paths. Through the training 

process, each accident node was represented as a 64-dimensional vector. To visualize the 320 

accident entities as data points as well as retain the information from the final embeddings, the 

t-SNE method was used to map the 320 data points as shown in Figure 5(a). The normalized 

weights of meta-paths were also obtained from the trained HAN model, indicating the different 

importance of various causal factors leading to crane accidents. As indicated in Table 2, 

considering the information revealed by meta-paths with a weight higher than 0.01, research 

findings were summarized from three aspects: 1) from the human error aspect, the misoperation 

of maintenance workers or inspectors was identified as an important risk factor for crane 

operation; 2) from the mechanical problem aspect, the fall of the crane boom or jib was revealed 

as an essential risk factor for crane operation, followed by malfunction or failure of the crane, 

and crane collapse; 3) from the environmental hazard aspect, poor weather or operation 

conditions were essential for crane operation, followed by a lack of clear division of work area, 

and a lack of PPE or communication devices. 

 

Figure 5: Visualization of the 320 accident data points (a) using t-SNE; (b) using fuzzy c-means 

Table 2: Obtained weights of meta-paths for three time periods. 

Meta-

path code 

Normalized 

Weight 

Meta-path 

code 

Normalized 

Weight 

Meta-path 

code 

Normalized 

Weight 

Meta-path 

code 

Normalized 

Weight 

A_IS_A 0.0005 A_HEa_A 0.0015 A_MPa_A 0.0238 A_EHa_A 0.2237 

A_WP_A 0.0004 A_HEb_A 0.0008 A_MPb_A 0.0008 A_EHb_A 0.0008 

A_PF_A 0.0005 A_HEc_A 0.0006 A_MPc_A 0.2393 A_EHc_A 0.1030 

A_WS_A 0.0006 A_HEd_A 0.0026 A_MPd_A 0.0008 A_EHd_A 0.1769 

A_MT_A 0.0005 A_HEe_A 0.0752 A_MPe_A 0.1458 A_EHe_A 0.0020 

Accident Pattern Detection. As shown in Table 3, considering that a lower DBI value, a higher 

DI value, and a higher SW value lead to better clustering, the optimal number of clusters was 

eight, which was achieved by using the fuzzy c-means clustering algorithm. As illustrated in 

Figure 5(b), the accident pattern detection can be summarized as follows: 

1) From Cluster 1, Cluster 2, and Cluster 3, it was found that some cases of being struck by 

loads (AT4) and being struck by falling crane parts (AT5) were highly associated, indicating 

the most significant contributing factor as the fall of the crane jib or boom due to a variety of 

reasons such as failed connections, the improper disassembly process, and system failures. 

2) From Cluster 4 and Cluster 5, it was found that some accident cases from various accident 

types could also be highly associated, but emphasizing a significant common contributing factor 

as the lack of fall protection devices. 
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3) From Cluster 6, it was found that some cases of the body caught in or between (AT7) and 

the finger/hand/foot caught in or between (AT8) were highly associated, indicating the most 

significant contributing factor as not properly separating the operating crane from surrounding 

workers. 

4) From Cluster 7, it was found that some cases of fall from the extension ladder (AT1), fall 

from constructed structure (AT2), and fall from the crane (AT3), were highly associated. In this 

cluster, the lack of fall protection devices was also emphasized as the most significant 

contributing factor. 

5) From Cluster 8, it was found that the cases of electrocutions (AT9) were typical accident 

type that was not associated with other accident types, indicating the environmental hazard of 

overhead power lines across the site's air space as the most significant contributing factor. 

Table 3: Comparison of validity indices for different clustering methods. 

Number of 

clusters 

Clustering algorithms 

Fuzzy c-means K-means 

DBI DI SW DBI DI SW 

6 1.6812 0.0393 0.3575 1.6708 0.0284 0.5418 

7 1.9370 0.0409 0.5598 2.0386 0.0245 0.5032 

8 1.8577 0.0411 0.5665 2.1742 0.0337 0.4524 

9 1.7858 0.0735 0.5545 1.9562 0.0406 0.4792 

10 2.0383 0.0615 0.5096 1.9385 0.0445 0.4910 

6. Conclusion 

This research proposes an accident-enabled risk analysis modeling framework that utilizes 

ontology modeling, knowledge extraction, and knowledge inference for identifying risk factors 

and accident patterns preserved in massive accident reports. To achieve the proposed semi-

automated construction accident report interpretation, the authors first developed an ontology 

model to specify the entities, attributes, and relations that should be considered for construction 

accident analysis. In addition, careful manual extraction and classification of the information in 

construction crane accident reports in the case study were conducted. The developed 

heterogeneous CSKG can support crane safety management and KG development in other 

realms. Furthermore, the authors constructed and implemented the HAN model for capturing 

heterogeneous accident information. The training and validation results indicated that the HAN 

model combined with factor clustering analysis can be used as an effective tool to elicit 

implications on construction safety management. 

The limitations of this research should also be noted. The first limitation concerns the accident 

database, which may not contain all crane accident mechanisms. And the description of some 

crane accident cases lacks the information necessary for analysis. The second limitation comes 

from the manual labeling process for classifying the accident contributing factors and 

consequences into different categories, which is laborious and time-consuming, as well as 

existing a certain amount of subjectivity. The authors will consider taking advantage of the 

power of Large Language Models (LLMs) to develop and evaluate a ChatGPT-assisted accident 

analysis framework to extend this research study in the future. 
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