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Abstract. Human-robot collaboration (HRC) is an emerging solution for productivity and safety 

concerns in the construction sector. The seamless HRC requires robots with task awareness and 

explainable perception processes. However, the implicit, dynamic construction task flow and noisy 

visual data captured in the field pose non-trivial challenges. To address these challenges, a vision-

based multi-granularity task primitive learning method is proposed. Specifically, this study seeks to 

enhance the mutual understanding between workers and robots by determining which granularity 

level is best for the tasks' understanding and whether the robot learns useful visual cues to solve the 

task. Results show that the intermediate level has the best compromise between classification 

performance and task knowledge and that the model learns both useful and useless cues to recognise 

task primitives. These results will increase our understanding of multi-granular worker behavior and 

robot perception processes. The outcomes will improve the smoothness of HRC teams. 

1. Introduction 

Automation and robotics have become mainstream solutions to productivity and safety 

challenges facing the construction industry (Brosque et al., 2020). It has been reported that 

more than 50 single-task construction robots have been developed to automate repetitive, 

physically demanding, and hazardous construction tasks (Bock and Linner, 2016). Although 

advances in sensing, manipulation, and computing enable the application of robotics in 

construction (Brosque et al., 2020), worker assistance and supervision are essential. Robots 

alone are not capable of accomplishing construction tasks, primarily due to the diversity and 

dynamic nature of the tasks, which necessitate the timely decision-making and flexible task-

handling skills of workers (Luo et al., 2020; Liu and Jebelli, 2022). To enable effective robot 

application in the field, a new paradigm, i.e., Human-Robot Collaboration (HRC), combining 

the dexterity and knowledge of humans with the strength and speed of industrial robots, should 

be established. 

To enable seamless HRC, robots need to be task-aware. Task knowledge is a critical 

prerequisite for robots to recognise worker intentions and provide tailored assistance (Grigore 

et al., 2018). However, unlike other industries, the construction industry has few standard task 

flows. Workers can adapt their execution processes based on environmental conditions (Wu et 

al., 2022). In order to handle the complexity of construction tasks, we formalise them as being 

composed of basic units of a task called task primitives. Depending on the level of abstraction, 

task primitives can be divided into different granularities, such as high-level subtasks and low-

level actions. To understand the dynamic construction task, the robot should learn at different 

levels. Learning at a high level informs robots about the task's progression, and learning at a 

low level tells how workers interact with the environment. However, finding a clear and useful 

granularity level can be challenging. Although a higher level can produce good classification 

performance, it may conceal multiple subclasses. If we choose a lower level, recognition 

performance suffers due to the diverse worker actions. Hence, discovering an appropriate 

granularity of task primitives is essential for gaining a better understanding of the task at hand.  
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To foster human understanding of robots, on the other hand, it is crucial to understand what a 

robot learns from the visual world. The visual data captured in the field will inevitably contain 

noise and interference because of the complex and dynamic environment. If robots make 

decisions based on this irrelevant information, it can compromise the versatility of robots, 

undermine worker trust in robots, and even endanger worker safety. One viable option to 

address this problem is to provide visual explanations for the perception processes of robots 

(Anjomshoae et al., 2019). Visual explanations of what robots have learned from the visual 

world to solve the task allow us to assess the reliability and reasonableness of robot decisions. 

This helps increase trust, smoothness, and productivity in a HRC team. Therefore, we expect 

that the task primitive learning approach can generate visual explanations. 

Existing studies on learning task primitives can be divided into rule-based and data-based 

methods. Rule-based methods generally recognise task primitives through manually defined 

rules (Martinez et al., 2021). These methods have good performance and interpretability in 

recognising task primitives that involve large equipment (Gong and Caldas, 2010). However, 

defining rules for learning task primitives related to workers' activities can be challenging due 

to the diversity of workers' actions (Luo et al., 2020). Data-based methods address this 

challenge via a data-driven strategy. These methods leverage deep learning models to directly 

learn task primitives from visual data, showing promising performance in low- and high-level 

task primitive learning (Luo et al., 2020). Nonetheless, existing data-based methods have the 

following limitations: (1) they focus on a single-granular and easily labelled task primitive, 

without access to holistic task information to determine which granularity level would be more 

appropriate for the task; and (2) they pay more attention to improving model performance on 

datasets while ignoring the interpretation of predictions, and thus, what the model learns from 

the visual world to accomplish the task remains unknown. 

To address these limitations, we aim to learn multi-granularity task primitives from construction 

videos for HRC. The objectives are: (1) to design a multi-granularity task representation to 

model the construction task structure; (2) to develop a multi-granularity task primitive learning 

model for determining which granularity of task primitives is most appropriate for the task at 

hand; (3) to visualise the learned visual cues to find out whether the model learned useful visual 

cues or dataset biases to solve the task; and (4) to test and evaluate the framework on a 

construction task. This study will provide insight into construction task modelling, multi-

granularity task primitive learning, and visual interpretation of task primitive learning. The 

outcomes will enhance the mutual understanding of workers and robots and help improve the 

smoothness of a HRC team. In the following, we first review the related work in task primitive 

modelling, learning, and visual explanation in Section 2. Then, we design a multi-granularity 

task representation model and present the proposed method for learning multi-granularity task 

primitives in Section 3. We test our method and present the findings in Section 4. Finally, we 

conclude our study in Section 5. 

2. Literature Review 

This section reviews construction task modelling, vision-based construction task primitive 

learning, and visual explanation methods. The first and second aspects form the structure of a 

construction task and the technical premise for learning task primitives, respectively. The latter 

helps us understand what a robot learns from the visual world. 
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2.1 Construction Task Modelling 

Task modelling involves efforts in the fields of construction and robotics. We first review the 

task representation model in the construction domain and then explore other task modelling 

methods in the robotics realm. 

A widely used representation model in construction is the Work Breakdown Structure (WBS), 

which breaks down a project using a hierarchical structure. The lowest level, including one or 

a group of tasks called work packages, is the smallest unit of work. Though WBS has 

advantages in project-level management, its granularity is too coarse for a HRC task. Besides, 

the element in WBS focuses on planned outcomes rather than actions and thus contributes less 

to improving the robot's understanding of worker behaviour. Unlike WBS, Wu et al. (2022) 

developed a more fine-grained task representation model. They decomposed a construction task 

into four levels (i.e., tasks, subtasks, activities, and actions). This model is suitable for simple 

and sequential tasks such as bricklaying. However, this model is unsuitable for complex tasks, 

as these tasks cannot be described using four granularity levels precisely and can be executed 

in different orders. 

Hierarchical Task Model (HTM) (Hayes and Scassellati, 2016) and knowledge graph (KG)-

based model (Zheng et al., 2022) in the robotics field provide viable solutions for these 

problems. HTM is a hierarchical, tree-like structure consisting of subtasks with different levels 

of abstraction. Each node in HTM is a subtask, and itself is a set of subtasks following sequential 

or concurrent orders. The leaf node of HTM is the atomic subtask, i.e., human actions. These 

features enable HTM to model different execution orders for complex construction tasks. The 

KG-based model further decomposes human actions into a graph-like representation, which 

encodes information about the attributes of interacting objects, the environment, and the agent. 

Though HTM and KG-based models can model various execution orders of a complex task 

using multi-granularity task primitives, these models are unsuitable for modelling construction 

tasks involving implicit cyclic processes. For example, in scaffolding construction, a worker 

may need to adjust the coupler and measure the levelness of the tube multiple times in order to 

reach an ideal position. However, this cyclic action pattern is uncertain and dependent on 

environmental conditions. This nature of construction tasks leads to implicit and dynamic task 

flows that render these static models ineffective. It also implies that action-level task primitives 

cannot accurately represent a construction task, which inspires us to find a more appropriate 

granularity of task primitives. 

2.2 Vision-based Construction Task Primitive Learning 

Existing vision-based methods for learning construction task primitives can be divided into 

rule-based and data-based methods.  

Rule-based methods generally require that knowledge of task primitives be captured and 

defined in advance so that task primitives can be recognised via predefined rules. Early studies 

(Gong and Caldas, 2010) identified task primitives through the motion of large equipment, as 

the motion pattern is limited and can be easily predefined. After that, studies learn task 

primitives using spatial and temporal relations between workers and equipment. For example, 

Luo et al. (2018) recognised worker activities through predefined spatial patterns, such as 

equipment, materials, workers and equipment, and workers and materials. In addition to spatial 

relationships, Martinez et al. (2021) also considered temporal relationships. They used virtual 

finite state machines to model the spatial pattern between workers and equipment as well as the 

temporal pattern between task primitives. Though rule-based methods are well interpretable, 

they are challenged by the diverse construction activities and the dynamic environment when 

defining rules. 
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Data-based methods learn task primitives directly from visual data and can be roughly divided 

into handcrafted feature-based and ConvNet-based methods. The early study identified task 

primitives using handcrafted features such as the histogram of gradient and the histogram of 

optical flow (Gong, Caldas and Gordon, 2011). Though handcrafted feature-based methods 

require less training data (Lin et al., 2020), these methods are limited to low-level features, such 

as edges and curves, which are not sufficient to characterise and distinguish complex worker 

action patterns (Zhang, Wang and Gao, 2021). With the evolution of deep learning, ConvNet-

based methods have enabled unprecedented breakthroughs in task-primitive learning. For 

example, Luo et al. (2019) identified twelve low-level task primitives with a 3D ConvNet. Luo 

et al. (2020) recognised high-level task primitives using a hierarchical method, combining a 3D 

ConvNet and a conditional random field model. These studies have proven that ConvNet-based 

methods have great potential for task-primitive learning. However, most existing studies focus 

on a specific granularity level that is easily labelled. These studies are unable to gain a general 

understanding of the task in order to determine the best granularity for the task. Besides, these 

studies could not explain their predictions due to the black-box nature of neural networks. Thus, 

we expect a ConvNet-based approach that can learn multi-granularity task primitives as well as 

generate an explanation about the prediction.  

2.3 Visual Explanation of ConvNets 

ConvNet-based task primitive modelling methods sacrifice interpretability for accuracy. To 

increase the model's transparency, the visual explanation is the most straightforward approach 

(Wang et al., 2019). It gains users' trust by highlighting the important regions influencing the 

predictions. Existing studies on the visual explanation of ConvNets include three methods: 

gradient visualisation, perturbation, and class activation map (CAM). Gradient-based methods 

generate a saliency map by backpropagating the gradient of a target class to the input layer 

(Simonyan and Zisserman, 2014). However, the quality of these maps is low (Omeiza et al., 

2019). Perturbation-based methods determine important input regions by perturbing the original 

input according to the observed changes in the model's prediction (Ribeiro, Singh and Guestrin, 

2016). However, these methods are time-consuming to find the minimum region (Wang et al., 

2019). CAM-based methods generate saliency maps through a linearly weighted combination 

of activation maps (Wang et al., 2019). These methods can provide high-quality and efficient 

visual explanations for a single input. Among CAM-based methods, gradient-weighted class 

activation mapping (Grad-CAM) (Selvaraju et al., 2016) is the most widely adopted approach 

(Bao et al., 2022), as it can produce saliency maps without altering ConvNet structure. Hence, 

Grad-CAM is adopted in this study to generate visual explanations. 

2.4 Research Gaps 

The literature review so far has identified three limitations on task primitive modelling and 

learning: (1) existing task representation models are unable to accurately define construction 

task structures involving implicit cyclic action patterns, affecting robots' task primitive learning 

and understanding; (2) there is a lack of multi-granularity task primitive learning methods that 

provide holistic information to determine which granularity is best suited for the task at hand. 

It is thus prone to error when manually defining the level of granularity, as it depends largely 

on individual knowledge and experience; and (3) there is a lack of transparency in ConvNet-

based task primitive learning methods, and whether the model learned useful visual cues or 

dataset biases to solve the task remains unknown, hindering the establishment of a trustworthy 

HRC team.  
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3. Methodology 

To bridge these gaps, this study proposes a ConvNet-based method for learning multi-

granularity task primitives. Specifically, regarding task primitive modelling and learning, we 

first formulate the representation of multi-granularity task primitives and then design a Multi-

Task Learning (MTL)-based ConvNet to classify task primitives at different granularities. 

Regarding the interpretation of model predictions, we visualise learned visual cues using Grad-

CAM and expect the model to learn useful visual representations from construction videos. 

3.1 Representation of Multi-granularity Task Primitives 

 

Fig. 1:  A hierarchical decomposition of a scaffolding construction task. The task is represented as a 

tree of primitives of varying complexity and abstraction.  

Previous studies (Cheng et al., 2020; Wu et al., 2022) concerned only simple tasks and 

developed a three-level task representation, i.e., tasks, subtasks, and actions (activities). 

However, this representation model is not suitable for modelling complex construction tasks 

due to the limited level of abstraction and the implicit, cyclic construction task flow. Hence, we 

propose two extra intermediate task primitives between subtasks and actions, i.e., steps and 

activities. This decomposition adheres to the WBS model's 100 percent rule, i.e., to model the 

outcome but not the process. Thus, high-level task primitives can be broken down into low-

level task primitives with greater precision. Specifically, the step is the further decomposition 

of subtasks, and the activity is the abstraction of actions, which attempts to model the outcome 

of dynamic worker actions. Their definitions are shown as follows: 

• Action: An action is a single worker's movement (e.g., walking) or complex interactions 

concerning the worker and their environment (e.g., carrying tubes and assisting other 

workers). Action is the finest-grained task primitive. 

• Activity: Activity is the abstraction of actions, which consist of one or more actions. It 

represents the goal state or planned result of a sequence of actions, which can be executed 

cyclically. 
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• Step: A step is an element of completing a subtask and the goal state of a sequence of 

activities, which can be implemented with multiple sequences of activities. 

• Subtask: A subtask is the basic unit of a task. It is achieved through a defined sequence of 

steps. 

• Task: A task represents the work to be conducted by a HRC team. It specifies the initial 

state and the goal state. It can be decomposed into a set of fixed-order subtasks. 

The hierarchical relationship of the above task primitives is shown in Fig. 1, which represents 

a real-world scaffolding construction task.  

3.2 ConvNet Architecture 

The proposed ConvNet architecture consists of two parts: the backbone and the classification 

head, as shown in Fig. 2. The backbone network is used to extract visual features from videos, 

and theoretically, it can be any ConvNet-based or vision transformer-based action recognition 

model. In this study, we chose the I3D model, which balances accuracy and efficiency well 

(Carreira and Zisserman, 2017). After the feature extraction performed by I3D, the extracted 

visual feature will be passed to the classification head for further processing. In the 

classification head, the multi-task learning (MTL) mechanism is adopted for multi-granularity 

task primitive recognition. MTL is a learning paradigm aiming to exploit useful information 

and learn a shared representation in related tasks to improve the generalisation performance of 

all tasks (Zhang and Yang, 2022). The intuition behind MTL is that related tasks can provide 

additional knowledge and serve as a regulation in joint training (Ruder, 2017). Following this 

spirit, we design a head with four classification tasks, i.e., action, activity, step, and subtask 

recognition, such that the efficiency of task primitive learning and the model's performance can 

be improved by using a single network and MTL. Specifically, the head is a collection of an 

average pooling layer, a dropout layer, and a fully connected (FC) layer. The number of neurons 

in the FC layer is the total of the four types of primitives. To train the model, four cross-entropy 

loss functions are introduced and function in different areas of the output of the FC layer.  As 

we treat four tasks as equally important, the total loss is the sum of the losses from the four 

tasks with the same weighting. 

 

Fig. 2: The proposed ConvNet-MTL architecture. (change img upside down)  

3.3 Grad-CAM 

Grad-CAM is a visualisation technique that produces saliency maps to indicate important areas 

of input. It can efficiently generate high-quality heatmap for each input without changing the 

original network structure. This technique visualises learned visual features from the last 
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convolutional layer, as it assumes that features in this layer achieve a good balance between 

high-level semantics and spatial information. When given an image and a targeted class, Grad-

CAM forward propagates the image via the CNN backbone and then through the task-specific 

head to obtain a raw score (e.g., the vector before the softmax layer). The gradient is set to zero 

for all classes except for the target class, which is set to one. This signal is then backpropagated 

until the last convolutional layer. A weighted vector is computed through a global average 

pooling for each channel of this backpropagated feature map. Finally, a localisation heatmap is 

generated via a weighted linear combination of a forward feature map and ReLU activation.  

4. Experiments 

To ground our study, a challenging scaffolding construction task was selected as an empirical 

study. This task requires multi-worker collaboration and has a high degree of uncertainty and 

complexity regarding worker actions and execution sequences. This section describes the 

experimental setup and findings. 

4.1  Experimental Setup 

Given the fact that RGB cameras are the most commonly used visual sensors in robots, seven 

videos concerning different subtasks of scaffolding construction have been collected. These 

videos were taken in an indoor environment with varying viewpoints. The total duration of 

these videos is approximately 40 minutes. According to the task representation in Section 3.1, 

we divided these videos into 9 subtasks, 13 steps, 16 activities, and 26 actions. We extract video 

clips from every 3 seconds of the video and create a dataset with 738 clips after removing the 

irrelevant clips. Each clip was manually annotated using these four granularity-level task 

primitives simultaneously. The training-to-test ratio is 4:1. To ensure a balance of actions across 

categories, we oversample actions with small sample sizes and undersample actions with large 

sample sizes. The statistics of the task primitives at the four granularities are shown in Table 1. 

The proposed model was implemented using PyTorch 1.8.1 and trained on an RTX 3070 GPU. 

This experiment adopts the warm-up training strategy with an initial learning rate of 0, 

gradually increasing to 0.0125 after 34 epochs. The total number of training epochs is 120, and 

the learning rate is reduced according to the cosine annealing policy. The optimiser is SGD, 

with a momentum of 0.9 and a weight decay of 0.00001.  

Table 1: Statistics of task primitives in the scaffolding construction task. The number in brackets 

represents the number of video clips. 

No. Action Activity Step Subtask 

1. set plan 

bracing (13) 

secure 

mushroom 

coupler (35) 

mushroom 

coupler setting 

(61) 

guardrail 

setting (29) 

install transom 

ledger (40) 

putlog setup 

(39) 

2. cut wire (31) set diagonal 

bracing (16) 

sole plate 

setting (51) 

tread board 

fixing (92) 

install putlog 

(39) 

ledger transom 

setup (40) 

3. set base plate 

(14) 

use spirit level 

(29) 

base plate 

setting (14) 

tread board 

setting (19) 

install toe 

board (82) 

toe board 

setup (82) 

4. tighten coupler 

(56) 

set ladder (26) foot tie setting 

(18) 

 install plan 

bracing (14) 

ladder setup 

(94) 

5. set foot tie 

(18) 

climb up 

platform (34) 

diagonal 

bracing setting 

(16) 

 install foot tie 

and standard 

(103) 

working 

platform setup 

(222) 
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6. use ladder (32) adjust sole 

plate (34) 

transom ledger 

setting (22) 

 prepare wire 

(31) 

plan bracing 

setup (14) 

7. set putlog (30) set transom 

ledger (22) 

toe board 

setting (82) 

 install ladder 

(63) 

guardrail setup 

(43) 

8. set coupler 

(13) 

set mushroom 

coupler (28) 

wire setting 

(31) 

 install tread 

board (19) 

base setup 

(168) 

9. set sole plate 

(17) 

secure tread 

board by wire 

(58) 

ladder setting 

(95) 

 install 

diagonal 

bracing (35) 

diagonal 

bracing setup 

(35) 

10. set toe board 

(33) 

tighten toe 

board (17) 

plan bracing 

setting (13) 

 install sole 

plates (51) 

 

11. secure ladder 

(37) 

set tread board 

(19) 

standard 

setting (24) 

 secure tread 

board (153) 

 

12. measure 

length (42) 

set guardrail 

(29) 

coupler setting 

(140) 

 install base 

plates (14) 

 

13. use wire (32) set standard 

(24) 

putlog setting 

(30) 

 install 

guardrail (93) 

 

4.2 Multi-granularity Primitive Learning Results 

The training and test results are shown in Fig. 3. The top-1 accuracy of four task primitives 

increases dramatically in the first 40 epochs. Though the increased magnitude of the subtask 

and step has since levelled off, the action and activity still increase, and the loss drops constantly. 

These results indicate that the model is not overfitting the dataset. The highest top-1 accuracy 

is achieved by the steps (1.00), then subtasks (0.99), activities (0.98), and actions (0.88). For 

understanding worker activities and the construction task, activity is optimal as it achieves the 

best compromise between accuracy and task knowledge. Compared to the step level and subtask 

level, the intermediate activity level has comparable recognition accuracy and conceals fewer 

subclasses, allowing it to reveal more specific task information. Although activity level cannot 

provide as detailed worker interactions as action level, it can produce more realistic sensing 

results due to the proper abstraction. 

 

Fig. 3: Training loss and test accuracy at different epochs. 
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4.3 Visual Explanation Results 

Using Grad-CAM, visual explanations with eight scenarios as examples are generated to 

determine whether the model learns useful visual cues or dataset biases. The results are shown 

in Fig. 4, where the region highlighted in yellow is supposed to be the focus of the model. The 

first row in Fig. 4. shows that the model learns useful cues when the background is simple and 

the workers' actions are obvious. However, when the background becomes complex or the 

worker's movement becomes less obvious, the model's focus shifts to the irrelevant background, 

as shown in the second row of Fig. 4. These results indicate that the model can learn useful cues 

in simple scenarios while also tending to learn dataset biases to distinguish task primitives in 

complex scenarios. To mitigate this problem, larger datasets and more advanced action 

recognition models should be explored, as they can improve models' generalizability. Besides, 

multi-modal data fusion methods and data pre-processing methods should also be investigated 

to acquire more cues and remove noise and interference from the input. Future applications are 

anticipated to transmit this visual explanation to the AR/VR device of a worker partner. Thus, 

the worker can assess the robot's decisions when the robot intends to provide assistance. 

 

(a) set base plate 

 

(b) set sole plate 

 

(c) measure length 

 

(d) tighten coupler 

 

(e) set mushroom coupler 

 

(f) set tread board 

 

(g) set standard 

 

(h) set toe board 

Fig. 4: The visual explanation of learned visual cues. 

5. Conclusion 

Ensuring seamless HRC requires robots to learn at the proper level for a task and workers to 

make sense of the robots' perception process. Nevertheless, the implicit, dynamic construction 

task flow and massive interference in the captured visual data pose a challenge to achieving 

these goals. To address these challenges, we seek to enhance the mutual understanding between 

humans and robots by answering 1) which granularities of task primitives are best for the task 

at hand, and 2) whether the robot learns useful visual cues or dataset biases to solve the task. 

The hierarchical representation of task primitives is first formulated to model the implicit, cyclic 

task flow, then an MTL-based task learning model is developed to learn four task primitives, 

and finally, the learned visual cues of the model is visualised using Grad-CAM. Using 
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scaffolding construction as a case study, this study found that intermediate-level activity is the 

optimal granularity because it achieves the best balance between recognition accuracy and the 

level of detail of task knowledge. This study also found that the model learned both useful and 

useless visual cues to separate task primitives in different scenarios. The research contributes 

to the body of knowledge by providing a transparent approach for modelling dynamic 

construction tasks and recognizing multi-granular worker behavior from construction videos. 

The outcomes will improve the mutual understanding between workers and robots and help 

facilitate a seamless HRC. 
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