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Abstract. Nowadays, sustainability objective has risen to the most attention in building engineering 
scenarios. Multi-objective optimization techniques can act as assistance in supporting decision-
making in a trade-off of various considerations in an interdisciplinary manner. In this study, we 
propose a recommendation system to alleviate the difficulty of informed decision-making regarding 
the rapid potential design space exploration, optimal design solution analysis, and dynamic 
interaction aligned with ongoing processes. To illustrate how the recommendation system is 
organized to help designers or engineers approach the general sustainability objective, an early 
design phase case study based on a real-world, massive energy performance certification dataset is 
conducted. The generated results conform to interpretations based on domain knowledge, which 
validate the effectiveness of the system assistance.  

1. Introduction  
The concept of sustainability within the architecture, engineering, and construction (AEC) 
domain is inherently complex. It typically incorporates energy performance, environmental 
impacts, and life cycle costs as interconnected considerations (Gervásio et al., 2014), which 
naturally composes a multi-objectives scenario. The need to acquire instant, robust, and precise 
assessments of such indicators in the domain has boosted the development and adaptation of 
various first-principles methods, as well as data-driven approaches (machine learning, ML) in 
the recent decade (Kheiri, 2018; Westermann and Evins, 2019). along with the raising interest 
in Building Sustainability Assessment Systems (BSAS) (Lazar and Chithra, 2020).  
Although various sustainability assessment tools exist in the ACE domain (Kumar et al., 2017; 
Tan et al., 2021), to our best knowledge, three critical characteristics are missing to adapt to 
current challenges: First, most assessment tools aim to solve multi-criteria decision making 
(MCDM) problem towards the process weighting, rather than evaluating potential design 
options, patterns, and consequences. These tools are limited by their dependence on a 
deterministic set of concise inputs that rely heavily on designers’ prior knowledge. Thus, a 
crucial element is missing: the dynamic potential for design space exploration (DSE) 
(Østergård, Jensen and Maagaard, 2017) integrated into the design process; Second, current 
methods are not sufficiently equipped to provide assistance throughout various building 
development levels (BDLs) (Abualdenien et al., 2020). Such as recommendations as interactive 
assistance are required to consider qualitative and implicit aspects that are difficult to formalize 
(Geyer, 2009); Finally, many of these tools are primarily based on pure knowledge-based 
processes or first-principles simulations. These tools own the computational bottleneck of 
conducting an exhaustive search in the potential design space to identify optimal solutions.   
In this study, we propose a recommendation system for sustainable building design as part of a 
machine assistance framework. This system recommends alternative optimal solutions 
considering assumptions and constraints of the design process, enabling a process-oriented, 
dynamic interactive manner as a dynamic DSE system. By exploring the potential patterns 
based on optimized results, the generated alternatives assist users’ decision-making process in 
building design and engineering scenarios.  
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2. Methodology 

2.1 Machine Assistance 

The sustainability recommendation system extends our previous research: a data-driven, 
process-based machine assistance framework for decision-making support in energy-efficient 
building design scenarios (Chen and Geyer, 2022), which consists of three parts: probabilistic 
surrogate modeling (prediction), ensemble modeling (estimation), and the model interpretation 
method (inference/ intervention), which gives the framework several unique characteristics: 

• Induction under uncertainties: Output distribution evaluation under incomplete inputs 
with their inherent uncertainties by combining probabilistic surrogate modeling with the 
ensemble mechanism. In our case, we choose NGBoost (Duan et al., 2019); 

• Inference: Analyze possible input assumptions' consequences as representative of the 
potential output value space in the dynamic interactive process by embedding SHAP 
interpretation method (Lundberg and Lee, 2017). 

• Feedback loop with consistency: The process shares parametric input representation 
with different target outputs, ensuring the consistency of the result interpretation. The 
process is also a feedback loop for building designers to explore potential design space, 
receive dynamic information, and infer toward lower energy consumption. 

Apart from the characteristic mentioned above, the machine assistance framework gives the 
foundation for aligning sustainability objectives during the design process. In this study, we 
intend to take a step forward by proposing a sustainability recommendation system that extends 
the framework with an evolutionary algorithm and clustering result to generate reproducible 
multi-objective optimized designs. 

2.2 Sustainability Recommendation System 
The recommendation system consists of five steps with a feedback loop that assist users in 
conducting informed decision-making for sustainable design at different BDLs:  

1. Objectives setting: With the updated condition of the design scheme, objectives 
(Output) selection or scenario (Inputs) adjustment (Deb, 2011) is set by the user based 
on design conditions, prior knowledge, or extra information feed-in. 

2. Information collection: The updated objectives and design scheme condition (settings 
and constraints of the present BDL) are fed to machine assistance, making estimations 
with model interpretation to update output distribution for each objective, and determine 
the potential design space.  

3. Optimization: The information is formalized to an optimizable problem; in this study, 
the genetic algorithm (GA), NSGA-II (Deb et al., 2002) is applied to generate a set of 
well-performing non-dominated solutions. This algorithm was chosen because it 
exhibits high robustness, an ability to deal with heterogeneous variables, and no need 
of weighing a priori. This step delivers the optimal Pareto front of the present BDL’s 
potential design schemes.  

4. Analysis: Well-performing design solutions are fed into unsupervised clustering to 
identify common characteristics and patterns; In this study, Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996; Schubert et al., 
2017) is chosen. Clustering results serve to deliver robust configurations against the GA 
generation randomness.  
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5. Assistance: The analysis results with alternative potential design recommendations are 
fed back to the designer. This information aids in informed decision-making and allows 
for necessary adjustments, which in turn update the recommendation system's outputs. 
This mutual information synchronization pattern gives the dynamic momentum to 
maximize the expected performance of the design toward sustainability objectives. 
Hence the system acts as an assistant for sustainable design. 

A conceptual illustration is presented in Figure 1.  

  
Figure 1: The process illustration of the sustainability recommendation system. 

The recommendation system is designed to reveal the following new characteristics that are 
essential for process-based assistance:  

• Efficient data usage from the real-world and simulation data: The ML surrogate 
model owns a solid potential to capture implicit input-output patterns behind the data. 
It allows the data from real-world collection and synthetic simulation to be fed into the 
model simultaneously to cover large-scale building cases. 

• Flexibility in applications of building engineering assessments: Depending on the 
training inputs definition and objective settings, the recommendation system is suitable 
to be adapted and applied to building engineering evaluation across the complete life 
cycle phase (design, construction, operation, retrofitting, etc.) 

• Rapid feedback for process assistance and interaction: The ML surrogate model is 
equivalent to encapsulating the corresponding fast feedback function based on the set 
objective, combined with GA providing multi-objective optimization. This combination 
removes major repetitive efforts of potential design space exploration and first-
principles simulation validation process, making in-time optimal solutions during the 
design process possible. 

2.3 Evaluation Metrics 

To facilitate the surrogate modelling performance comparison regardless of the numerical scale 
of the result in different objectives, the three metrics commonly used in regression task 
evaluations are selected: Normalized Root Mean Square Error (NRMSE), Symmetric Mean 
Absolute Percentage Error (sMAPE), and Coefficient of determination (R-squared or R2). Their 
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mechanism detail and the consideration of metrics selection are referred to in this paper 
(Chicco, Warrens and Jurman, 2021).  

3. Case Study 
In the case study, we simulate a scenario in the early building design phase in which the building 
type, location, and area range are defined; however, precise façade geometry, material, and 
energy system configuration are unknown. 

3.1 Data Description and Pre-processing  
To demonstrate a typical multi-objectives optimization case, we selected a scenario in the 
building’s early design phase with the same open data sources used in our previous machine 
assistance research (Chen and Geyer, 2022): Energy Performance of Buildings Data: England 
and Wales (epc.opendatacommunities.org, 2020), which is published and maintained by the 
Ministry of Housing, Communities & Local Government from the UK every half-yearly. The 
dataset contains dwellings’ detail across most UK regions and connects to the domestic EPC 
(Energy performance certificate). The reasons for selecting this data are as follows: 

• Real-world massive dataset with expertise validation: The data is collected under the 
EU Directive requirements on the energy performance of buildings. The robustness of 
the data in relation to buildings is guaranteed by the energy assessor carried out the 
accreditation scheme based on Standard Assessment Procedure (SAP) for new dwellings 
and Reduced SAP (RdSAP) in the UK (gov.uk, 2012). Each building data corresponds 
to a certain real-world building with trackable information for validation purposes. 

• Target input/output available: This EPC dataset is in a fine data condition and 
contains the necessary information for supporting building early design phase analysis: 
features in building geometry, component characteristics, and energy systems. Apart 
from the energy performance data, the dataset also includes each building’s 
environmental impact and cost data. 

The dataset contains 19,725,379 building records with various building types and built forms. 
We applied the same data cleaning process as in machine assistance research to remove the 
semantic noise and missing data. To specify a design case in this study, we set a scenario to 
filter and select the sub-data: a flat, detached building with records shows built after the year 
2007 between 150-250 m2. Eventually, 7,566 real-world building records remain. 

3.2 Inputs/Objectives Definition 
Next, we set objectives (i.e., output) based on the given dataset: three indicators are chosen and 
modified in an annual sum per square meter behaviour: Energy Consumption in kWh/m2/year, 
environmental impact by CO2 Emission equivalent in kg/m2/year, and the Operational Cost in 
£/m2/year. 
For the input parameters, ten features in three major categories are selected as building early 
design phase parametric representatives; they are: Geometry:  Total Floor Area, Floor Height, 
Building Glazed Area, and Number of Heated Rooms; Component material property: 
Descriptions of Windows, Walls, and Roof; Energy system: Descriptions of Main Heating 
Systems, Secondary Heating Systems, and Building Ventilation Type. 
In this input feature set from EPC data, only Total Floor Area, Floor Height, and Number of 
Heated Rooms are numerical parameters; the rest of the features are composed of semantics 
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descriptions. To ensure the models’ performance, we implemented label-encoding on these 
semantic features into categorical numbers instead of using one-hot encoding to prevent the 
curse of dimensionality by high-dimensional feature spaces.  
Detailed input & output descriptions, ranges, and data types are shown in Table 2. Table 3 
presents the labelled encoded semantic categories of input features. Both tables are available in 
Appendix. 

3.3 Surrogate Modelling and Machine Assistance 
Once the input features and objectives were determined at one BDL, we fed the data into the 
surrogate modelling, training corresponding models with a hyperparameter grid-search strategy 
and 5-fold cross-validation (Refaeilzadeh, Tang and Liu, 2009). We point to our previous study 
for a detailed tuning of surrogate modeling and machine assistance implementation description 
(Chen and Geyer, 2022). The result is presented in Table 1. Given the fact that the data is 
collected from real-world and only ten building parameters representing the early design 
process as model inputs, all models exhibited a promising performance (sMAPEs are around 
10, or 90% accuracy), in which energy consumption prediction being the most accurate, and 
operational cost prediction being the least.  

Table 1: Accuracy result of surrogate models. 

Model/Objective NRMSE sMAPE R2 
Energy consumption 8.08 8.78 0.86 
CO2 Emission 5.49 9.35 0.82 
Operational Cost 8.45 10.35 0.77 

Next, surrogate modelling combined with machine assistance evaluation (Step 2 in Figure 1) 
gives the estimation result for three set objectives, as illustrated in Figure 2. The estimation 
results well describe the potential design space within the ranges of input data: For energy 
consumption, machine assistance estimated the output range between 109.5 and 378.6 
kWh/m2/year, with the top three critical features ranked as main heating system, total floor area, 
and floor height; For CO2 emission and operational cost, the estimated result shows from 16.3 
to 260.3 kg/m2/year, and 3.2 to 53.6£/m2/year in a long tail distribution, respectively, with the 
same top three critical feature listed as total floor area first, then main heating system, and floor 
height. Besides the result distributions, some primitive information is observable, e.g., For a 
flat building, a bigger total floor area corresponds to lower energy consumption, CO2 emission, 
and operational cost in annual average per square meter, while the changes of floor height show 
opposite trends. 

3.4 Pareto Front, Clustering Analysis, and Recommendations 
After the machine assistance gives information about the result ranges for all objectives, NSGA-
II is then applied with trained surrogated models to find a set of Pareto-optimal solutions in an 
iterative elitism process. In this test case, we set the problem as minimizing all three objectives 
and run the GA by the set input ranges with a 1000 population size in 100 generations. Once 
the Pareto front is determined, we applied DBSCAN for input clustering, and colored outputs 
with the clustering result. A 3D scatter projection plot is presented in Figure 3. 
The axis x, y, and z in the 3d-scatter plot correspond to the energy consumption, CO2 emission, 
and operational cost, respectively. Some insightful conclusions are summarized and listed 
below:  
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• The effectiveness of the machine assistance information and GA: The output ranges 
of all optimal sample results correctly correspond to the estimation results generated 
from the machine assistance. All generated sample results from Figure 3 correspond to 
the minimum end of the objective estimation range in Figure 2. 

 
Figure 2: Estimation result of three objectives within a given potential design space derivative from machine 

assistance (Chen and Geyer, 2022) . Three columns from left to right present information with regard to Energy 
consumption, CO2 emission, and Operational cost, individually, while three plots/tables from top to bottom 

illustrate output distribution, feature importance, and uncertainty estimation, respectively. The feature 
importance plot is generated by SHAP (Lundberg and Lee, 2017) ; SHAP value samples in each feature row 

from high to low are marked from red to blue. All semantic features are label encoded; the dictionary is available 
in Table 3. 

 
Figure 3: 3d-Scatter plot of Pareto front of building design case in a trade-off between energy performance, 

environmental impact, and cost, presented in two perspectives. Each scatter dot means a result based on a single 
optimized design parameter combination, colored by the clustering result from the DBSCAN algorithm learning 

from design parameter data. 

• The trade-off between objectives is needed: The defined problem is to minimize all 
three objectives; however, we noticed that the normal direction of the generated Pareto 
front point to the global minimum, which means that the trade-off consideration 
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between energy consumption, environmental impact, and operational cost is required in 
this building design case. 

• Design patterns exist in this sustainable building design case: We observed a clear 
grouping behaviour from the input clustering results (orange, blue, and green). Three 
clusters are identified in the optimal samples: The orange cluster represents the lowest 
energy consumption, with a steep trade-off between low environmental impact and low 
operational cost; The green cluster shows differently, with energy consumption and CO2 
emission reaching relatively high positions and the cost staying at low points; The blue 
cluster plays in a more balanced manner compared to others. 

To further investigate the design commonality in these clusters, we use parallel coordinates 
plots to compare clusters and examine their feature combination patterns, as presented in Figure 
4. In our case context, the sustainable design of a detached flat building, the parallel coordinates 
plot shows clear patterns in optimal design clusters (recommendations) as follows: 

 
Figure 4: Parallel coordinates plot of optimized design recommendations. Each coordinate represents one input 

feature with possible values range in a different scale. Features with semantic options are the same label encoded 
as in Table 3. Each line in the plot stands for a sample. From top to bottom, the first plot shows all three clusters 
with each sample choice in input features. The colour palette remains the same as in Figure 3. In the second and 

third rows, only one cluster is coloured to show the cluster options clearly. 

• General patterns: The generated optimal samples are grouped into two major floor 
area ranges, around 165 m2 and 210 m2. Meanwhile, they have relatively low floor 
height (around 2.3 m), normal glazed area (10%-20% based on RdSAP), and 
triple/double glazing windows. The rest of the features are varied by design 
combinations except the main heating system: only two systems are chosen in optimal 
designs, community scheme with combined heat and power, or with mains gas. 
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• Green cluster: This cluster has a floor area of around 210 m2; The wall is well insulated, 
composed of cavity wall, granite, whinstone, or sandstone; The roof type is pitched with 
insulation; The main heating system is the community scheme with combined heat and 
power, and use only nature ventilation in the building. 

• Orange cluster: This cluster has a smaller three-room-heated building design with an 
average floor area of around 165 m2 and well-insulated timber frame walls. These 
designs have an insulated thatching roof or roof room(s) with an insulated ceiling. The 
main heating system is the community scheme with main gas, and mechanical 
ventilation for extract. 

• Blue cluster: This cluster has a similar floor area range as in the other two clusters with 
fully triple-glazed windows, timber frame walls, and roof room(s) with an insulated 
ceiling or thatching roof. These designs have more heated rooms (5-8 rooms) with a 
heating system of combined heat and power community scheme and natural ventilation. 

In fact, these three clusters and the general patterns provide primitive but insightful information 
as strategies to assist decision-making in the early design phase. In a context of real-world 
scenario, feeding these recommendations to the designer or engineer helps them narrow down 
the design variations, and constantly validate their design performance compared with optimal 
ones to formalize an informative feedback loop. In fact, this feedback loop, corresponding to 
step 2 to step 5 in Section 2.2 (illustrations from Figure 2  Figure 3  Figure 4), creates a 
dynamic pattern of generating optimal Pareto front based on the growing BDLs. With the new 
design parameters fixed by designers, the Pareto front updates accordingly and continues the 
loop in an approaching manner for both ends to meet each other eventually: the ongoing design, 
and the sustainable objectives. 

4. Discussion & Conclusion 
In this paper, we construct a sustainability recommendation system that provides an interactive 
pattern to identify optimal solutions with clusters for a specific design situation. The proposed 
system enables rapid, informed decision-making aids toward the process in dynamic behaviour 
throughout potential design space, which is defined from the Building Development Level 
(BDL) with its set of variables. 
Essentially, this system explained and proved only a straightforward mindset: Using MLs to 
learn and map implicit relationships between architectural design and physical characteristics, 
while the evolutionary methods are used to eliminate the time and resources wasted in the 
exhaustive search for optimal solutions. However, the way of representing building designs is 
not limited to parametric models, as shown in this study. With the charging development of 
multimodal machine learning (MML) and large-scale language models (LLM), the same 
mindset can be seamlessly adapted to these models: e.g., using MML to capture information 
from natural language description and generating corresponding design prototypes, 
parameterization via the MML and optimized with GA, and feedback in the form of language, 
image, or other design representations. It contains the potential to cause an impact that reshapes 
the ACE industry. 
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Appendix 
Table 2 Input & Output features  

Feature Category Description Data type Range 
Total floor area Geometry Total Useful Floor Area (m²) float [10, 230] 
Floor height Geometry Average height of the storey in meters float [2, 4.2] 

Glazed area Geometry Ranged estimate of the total glazed area of the 
Habitable Area. category 3 

Number heated rooms Geometry The number of heated rooms in the property. int [1, 9] 

Windows description Component 
characteristics Overall description of the property feature category 5 

Walls description Component 
characteristics Overall description of the property feature category 18 

Roof  
Description 

Component 
characteristics Overall description of the property feature category 19 

Mainheat. description Energy system Overall description of the property feature category 21 
Secondheat. description Energy system Overall description of the property feature category 8 

Mechanical ventilation Energy system Identifies the type of mechanical ventilation the 
property has.  category 3 

Energy consumption 
current per m2 Output Current estimated total energy consumption for 

the property per year (kWh/m²).  float [65, 392] 

CO2 emissions current 
per m2 Output CO₂ emissions per square meter floor area per 

year in kg/m² float [1.76, 
346.75] 

Cost operation current 
per m2  Output Current estimated annual energy costs for 

heating, hot water, and lighting per year in £/m² float [2.84, 
64.94] 

Table 3: Dictionary of labelled feature.  

Feature Labelled code 
Glazed area [Less Than Typical (less than 10%): 0, More Than Typical (more than 20%): 1, Normal: 2] 
Windows 
description 

[Fully double glazing: 0, Fully triple glazing: 1, Mostly double glazing: 2, Partial double glazing: 3, 
Single glazing: 4] 

Walls 
description 

[Cavity wall, insulated: 0, Cavity wall, filled cavity: 1, Cavity wall, ei.: 2, Cavity wall, ii.: 3, Granite 
or whinstone, insulated: 4, Granite or whinstone, ei.: 5, Granite or whinstone, ii.: 6, Sandstone, 
insulated: 7, Sandstone, ii.: 8, Solid brick, insulated: 9, Solid brick, no insulation: 10, Solid brick, 
ei.: 11, Solid brick, ii.: 12, System built, insulated: 13, System built, ei.: 14, System built, ii.: 15, 
Timber frame, insulated: 16, Timber frame, ii.: 17] 

Roof 
description 

[Flat: 0, Flat insulated: 1, Pitched: 2, Pitched 100mm li.: 3, Pitched 12mm li.: 4, Pitched 150mm li.: 
5, Pitched 200mm li.: 6, Pitched 250mm li.: 7, Pitched 270mm li.: 8, Pitched 300+mm li.: 9, Pitched 
300mm li.: 10, Pitched 50mm li.: 11, Pitched 75mm li.: 12, Pitched insulated: 13, Pitched insulated 
at rafters: 14, Roof room(s) ceiling insulated: 15, Roof room(s) insulated: 16, Thatched: 17, 
Thatched with additional insulation: 18] 

Mainheat. 
description 

[Air source heat pump, radiators, electric: 0, Boiler and radiators, LPG: 1, Boiler and radiators, 
electric: 2, Boiler and radiators, mains gas: 3, Boiler and radiators, oil: 4, Boiler and underfloor 
heating, LPG: 5, Boiler and underfloor heating, electric: 6, Boiler and underfloor heating, mains 
gas: 7, Community scheme: 8, Community scheme with CHP: 9, Community scheme, mains gas: 
10, Electric ceiling heating: 11, Electric storage heaters: 12, Electric underfloor heating: 13, Ground 
source heat pump, radiators, electric: 14, Ground source heat pump, underfloor, electric: 15, No 
system present: electric heating assumed: 16, Portable electric heating assumed for most rooms: 17, 
Room heaters, electric: 18, Warm air, electric: 19, Warm air, mains gas: 20] 

Secondheat. 
description 

[None: 0, Portable electric heaters: 1, Room heaters, coal: 2, Room heaters, dual fuel (mineral and 
wood): 3, Room heaters, electric: 4, Room heaters, mains gas: 5, Room heaters, smokeless fuel: 6, 
Room heaters, wood logs: 7] 

Mechanical 
ventilation 

[mechanical, extract only: 0, mechanical, supply and extract: 1, natural: 2] 

ii. with internal insulation;   ei. with external insulation;   li. loft insulation 
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