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Abstract. Onsite activities of modular integrated construction (MiC) mainly involve repetitive 

module installation processes. Automatic three-dimensional module detection (3DMD) can 

facilitate effective MiC site management with enhanced safety, efficiency, and quality by 

determining module postures through oriented 3D bounding boxes. However, the lack of and 

difficulty in creating datasets with real point clouds of module installation impede the exploration 

of 3DMD. This paper thus proposes a virtual prototyping (VP)-enabled method to develop a pseudo-

lidar point cloud dataset for 3DMD. Building information modelling and 3D simulation engine were 

combined to establish simulative MiC construction scenes. Then, diverse scenarios were developed 

for generating and annotating pseudo-lidar point clouds. The dataset was validated using the 

Frustum-PointNet model with a maximum average precision of 89%. This paper thus provides a 

methodological foundation for the 3D detection of other construction objects and an innovative 

approach to strengthen image/point cloud datasets in construction. 

1. Introduction 

Modular integrated construction (MiC) is gaining increasing attention in the construction 

industry with demonstrated benefits of enhanced productivity, quality, safety, and sustainability 

(Pan and Hon, 2020). It employs multiple three-dimensional (3D) units that are fully finished 

in the factory and then transported to the site for assembly. Onsite activities of MiC are thus 

predigested to involve repetitive module installation processes. 3D perception of these 

processes will facilitate effective MiC site management by fully understanding what is 

happening on the construction site. For example, safety will be enhanced by knowing the actual 

distances between modules and workers/equipment to prevent collision accidents, progress will 

be monitored by analysing module locations, and quality will be assured by identifying 

horizontal/vertical errors between adjacent modules. 3D object detection (3DOD) is a 

promising computer vision technology to realise 3D perception by detecting the presence of 

objects via labels, denoting the shapes via oriented 3D bounding boxes (bboxes), and 

determining the locations via transformed coordinates (Qian et al., 2022). This present paper 

selects the module as the target object due to its essential role in MiC site management. 

Methods for 3DOD have evolved from traditional machine-learning techniques that require 

human-defined features to end-to-end deep-learning techniques that learn feature 

representations automatically from data (Liu et al., 2020). Although deep learning approaches 

to 3DOD have aroused significant attention, relevant research in construction is still in its 

infancy mainly due to two challenges: the difficulty of 3D data collection and the paucity of 

intelligent algorithms. This paper focuses on addressing the first challenge. A comprehensive 

dataset with sufficient data samples is imperative for training and testing deep learning models. 

Generally, there are two commonly used 3DOD modalities, i.e., images and point clouds. Some 

researchers have developed image datasets by collecting construction data using surveillance 

cameras or smartphones for detecting dynamic construction site objects (Lee et al., 2022, 

Otgonbold et al., 2022). However, image-based 3DOD performs significantly poorly as it is an 

ill-posed inverse problem by recovering 3D information from 2D input (Qian et al., 2022). 

Comparatively, point clouds are more reliable data sources that can provide precise 3D spatial 
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information. However, developing a point cloud dataset is much more difficult than creating an 

image dataset, mainly suffering from three aspects, i.e., data collection, annotation, and sensor 

cost. First, it is time-consuming and cumbersome because lidar sensors need to be set up at 

several locations to obtain comprehensive data from different viewpoints. Moreover, lidar 

sensors should be located close to the target object to avoid large numbers of sparse points, 

which has potential safety risks and may affect ongoing construction activities. Thus, it is 

difficult to obtain point clouds of practical module installation processes. Second, the accuracy 

of data annotation may be impaired due to the uncertainties in calibrating the ground truth of 

3D bboxes of modules. Researchers can quickly identify 2D bboxes of target objects in images, 

whereas the identification of 3D bboxes in point clouds depends on several factors, e.g., point 

cloud density, object similarity, and expert experience. Lastly, lidar sensors’ prohibitive 

deployment cost in the current market also impedes the development of point cloud datasets. 

To tackle these challenges, researchers have proposed pseudo-lidar point clouds, which convert 

input images into point cloud representations through depth estimation (Weng and Kitani, 2019). 

It has effectively bridged the performance gap between point cloud-based and image-based 

3DOD (Weng and Kitani, 2019, Wang et al., 2020). Despite some preliminary efforts to adopt 

pseudo-lidar point clouds for 3DOD of construction equipment (Shen et al., 2021), relevant 

research in construction is still scarce, and well-recognised public point cloud datasets are 

lacking owing to unique construction projects and challenging data collection. This present 

paper aims to address these challenges by developing a pseudo-lidar point cloud dataset for 3D 

module detection (3DMD) during module installation processes. However, although real-life 

image data can be captured from MiC sites, the accuracy of depth estimation and uncertainties 

in data annotation significantly hinder the construction of a high-quality pseudo-lidar point 

cloud dataset. Virtual prototyping (VP) is a promising alternative to generate realistic and 

reliable data by simulating construction sites with the integration of Building Information 

Modelling (BIM) (Zheng et al., 2020), which enables the generation of precise and sufficient 

pseudo-lidar point clouds to facilitate model training. Therefore, this paper proposes a VP-

enabled method to develop the pseudo-lidar point cloud dataset for 3DMD on MiC sites. The 

developed dataset involved 1024 pseudo-lidar point clouds and was validated using Frustum-

PointNet (F-PointNet), a mainstream 3DOD algorithm. The proposed VP-based method is an 

effective innovation to strengthen point cloud datasets for 3DOD in construction. This study 

also facilitates construction automation by achieving point cloud-based 3DMD. 

2. Literature Review 

2.1 Module Installation Process Monitoring 

MiC transforms most onsite works into factory prefabrication for producing complete modules, 

and module installation becomes one of the critical onsite activities for achieving successful 

project delivery. Monitoring module installation processes will enhance MiC site management, 

e.g., progress control, safety management, and quality assurance. However, current manual 

practices remain labour-intensive and time-consuming. To facilitate MiC automation, a 

classification model was proposed by Zhang et al. (2019) to automatically recognise different 

module installation stages for progress analysis and control. Furthermore, Zheng et al. (2020) 

developed a deep-learning model to detect the presence and determine the location of modules 

in images. The developed model proved effective for automatic progress monitoring, whereas 

the limited information provided by 2D bboxes was insufficient for accurate geometry 

assessment or reliable collision detection. Thus, it is crucial to explore 3DMD to monitor 

module installation processes comprehensively. 
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2.2 3D Object Detection in Construction  

Computer vision techniques have been increasingly applied in construction to automate tedious 

and laborious tasks. Object detection is a fundamental application of computer vision to detect 

various construction objects. Construction site images collected using surveillance cameras or 

smartphones have proved to be effective in detecting instances of typical classes, e.g., helmets 

(Otgonbold et al., 2022), and excavators (Lee et al., 2022). However, most image-based studies 

have focused on 2D object detection using a 4-parameter bbox (Figure 1(a)) to locate objects 

in images. Some researchers have attempted to generate 3D bboxes in images (Figure 1(b)) by 

identifying critical vertices based on geometric constraints (Yan et al., 2020) or estimating the 

image depth (Shen et al., 2021). Nevertheless, compared with the detected data obtained from 

a 3D bbox in point clouds (Figure 1(c)), image-based 3DOD is still an ill-posed inverse problem 

by recovering 3D information from 2D input (Qian et al., 2022). Moreover, problems induced 

by image characteristics, e.g., object occlusion due to overlapping, 3D distortion due to 2D 

projection, and distance misjudgement due to different camera viewpoints, have potential 

construction safety risks.  

 

Figure 1: Illustration of bounding boxes in image and point cloud 

Point clouds have thus been utilised to detect specific construction objects to address the 

limitation of 2D images. Since point clouds are essentially irregular and unordered clusters of 

points without semantics, features are important means of object detection. Initially, geometry- 

and knowledge-based detectors were developed for recognising specific building elements from 

point clouds. For example, a local curvature-based shape descriptor was developed to extract 

pipe spools (Czerniawski et al., 2016) and a rule-based detector was devised to recognise walls, 

ceilings, and doors building on the common knowledge of orientations, openings, and spatial 

relationships (Wang et al., 2015). To further expand the targets to diverse object classes, 

machine learning was adopted to detect construction objects (e.g., construction equipment 

(Chen et al., 2018)) using manually defined 3D feature descriptors, which requires a small-scale 

dataset but suffers from low accuracy. The detection performance strongly depends on the 

manual feature selection. Consequently, the deep learning approach has attracted attention as it 

performs end-to-end detection without defining the features and can achieve high accuracy (Liu 

et al., 2020). However, it requires a larger-scale dataset and thus has yet to be explored in MiC 

projects because of data deficiency. Therefore, this paper proposes a VP-enabled method to 

address the challenge of collecting point clouds of module installation through simulation. 
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2.3 Dataset Generation Methods in Construction 

As a high-quality dataset is fundamental to high-performance object detection tasks, many 

researchers have developed special image datasets for diverse construction objects. Apart from 

the direct use of public datasets, the identified dataset generation methods can be divided into 

three categories: site collection, online searching, and virtual modelling. Site collection aims to 

capture data from real-life construction sites using sensors (e.g., cameras and lidar sensors), 

while collecting point clouds of practical module installation processes is problematic as 

mentioned above. Online searching is also not applicable for this study as there is no such open-

source point cloud data for onsite construction activities of MiC projects. Virtual modelling 

generates virtual data by establishing simulation models of varied construction objects. This 

approach was mostly adopted to supplement insufficient real-life data (Zheng et al., 2020, Lee 

et al., 2022). However, in some cases where real-life data were unavailable, virtual modelling 

was also used to generate a simulated dataset to support object detection, e.g., an image dataset 

of building structural components derived from a scale model (Hou et al., 2020) and a point 

cloud dataset of building components derived from a BIM model (Chuang and Sung, 2021). 

The virtual datasets were effective in achieving reliable object detection results. Therefore, this 

paper selects the virtual modelling method to develop a simulated point cloud dataset for 3DMD. 

3. Research Methodology 

This study adopted a four-step approach to develop the VP-enabled pseudo-lidar point cloud 

dataset for 3DMD on MiC sites. The overall research framework is presented in Figure 2. First, 

a VP model was established to simulate realistic module installation processes. Second, various 

parameters (e.g., module location, module size, and camera attitude) were considered to create 

different scenarios, from which colour and depth images were captured to generate pseudo-lidar 

point clouds. Third, the created dataset was automatically annotated, building on a popular 

dataset format. Finally, the dataset was trained and validated using a mainstream 3DOD 

algorithm. The steps and outcomes are described below. 

 

Figure 2: Overall research framework 

3.1 Simulation Model Establishment 

BIM offers informative 3D digital representations of construction projects with its powerful 

physical and functional characteristics and has been extensively adopted in construction (Xu et 
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al., 2022). A 3D digital model of MiC buildings is imperative to simulate module installation. 

Therefore, a BIM model was established to represent a real-life MiC project in Hong Kong. 

Revit was selected for model creation in this study owing to its popularity and applicability. 

However, a static BIM model was insufficient to simulate the dynamic module installation 

processes, and a platform that provides development functions was required. Unity was thus 

selected, which is a popular game engine that can create 3D interactive experiences. The created 

BIM model was imported into the Unity environment, together with other construction objects, 

to simulate the real construction scene, e.g., workers, tower cranes, trucks, and guardrails.  

3.2 Data Generation 

Scenario Classification. 

Different MiC scenarios were determined, considering various parameters to reflect real-life 

module installation processes, increasing the diversity and comprehensiveness of the developed 

dataset. Table 1 shows the parameters that constitute different scenarios, i.e., module type, 

module installation stage, module posture, and camera attitude, and Figure 3 illustrates the 

development process of a scenario. First, module-related variables were selected, including 

module type and installation stage. The selected MiC project adopted four types of modules 

with a height of 3.15m, a width of 2.25m, and a varied length of 5.55-8.4m. Different colours 

were assigned to denote the module types. Besides, the three typical module installation stages, 

namely, module hooking, lifting, and positioning (Zhang and Pan, 2020), were covered for each 

module type. Once these two variables were determined, a random point was selected based on 

the planned crane lifting path to obtain module location and rotation. Finally, eight virtual 

cameras were randomly distributed from different viewpoints (0° to 360°) and distances (5 to 

60 m) to capture images. Consequently, eight data samples could be simultaneously generated 

from one scenario, accelerating the data collection and increasing the data diversity.  

Table 1: Identified parameters to constitute different scenarios. 

Parameters Values 

Module type Type A, Type B, Type C, Type D 

 Module installation stage Hooking, Lifting, Positioning 

Module posture (location and rotation) Random point selection in the planned path 

Camera attitude (location and rotation) 5-60m, 0-360° 

 

Figure 3: Development process of a scenario 
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Figure 4 depicts the profile of scenarios by module type and installation stage. A total of 128 

scenarios were eventually set up, with 32 for each module type. Regarding installation stages, 

module lifting accounted for the largest portion of scenarios (47.66%) due to its longest distance, 

followed by module positioning (37.5%) and module hooking (14.84%). Module positioning 

sometimes takes a long time to ensure the assembly quality and was thus more considered in 

the scenarios. 

 

Figure 4: Profile of scenarios by module type and module installation stage 

Pseudo-Lidar Point Cloud Generation. 

A data generation pipeline (Figure 5) was proposed based on the established scenarios to 

generate pseudo-lidar point clouds. Colour and depth images captured from Unity were inputted 

to merge into RGBD images using the open-source library Open3D. Then, a multi-coordinate 

transformation was performed to obtain the pseudo-lidar point cloud. A clipping box was used 

in Unity to define the field of view of cameras, and the 3D objects were initially in the camera 

coordinate system (CCS) (Figure 5(a)). Then, a homogeneous transformation matrix was 

utilised to change the points from CCS to the clip coordinate system (CLCS) (Figure 5(b)). 

Before projecting the points onto the screen, the computer automatically transformed the CLCS 

to a normalised device coordinate (NDC) (Figure 5(c)) by projective division to remain points 

that were included in the clipping box. Finally, the points were distributed in the RGBD image 

coordinate system (ICS) (Figure 5(d)). Two specific points (A and B) are highlighted in Figure 

5 to illustrate the multi-coordinate transformation, and the equations used are presented in Table 

2. A script was developed to reversely transform points from ICS to CCS for generating pseudo-

lidar point clouds. A total of 1024 data samples were finally captured and generated. 

 

Figure 5: Data generation pipeline for pseudo-lidar point clouds 
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Table 2: Multi-coordinate transformation 

Coordinates Point expressions 

Camera Coordinate System (𝑋𝑐 𝑌𝑐  𝑍𝑐): ground truth in Unity 

Clip Coordinate System 

[
 
 
 
𝑋𝑐𝑙𝑖𝑝

𝑌𝑐𝑙𝑖𝑝

𝑍𝑐𝑙𝑖𝑝

𝑊𝑐𝑙𝑖𝑝]
 
 
 

=

[
 
 
 
 
 
2𝑁𝑒𝑎𝑟

𝑤
   

 
2𝑁𝑒𝑎𝑟

ℎ
  

  
−(𝐹𝑎𝑟+𝑁𝑒𝑎𝑟)

𝐹𝑎𝑟−𝑁𝑒𝑎𝑟

−2𝐹𝑎𝑟×𝑁𝑒𝑎𝑟

𝐹𝑎𝑟−𝑁𝑒𝑎𝑟

  −  ]
 
 
 
 
 

[

𝑋𝑐

𝑌𝑐

𝑍𝑐

  

]  (1) 

Normalised Device Coordinate [

𝑋𝑛𝑑𝑐

𝑌𝑛𝑑𝑐

𝑍𝑛𝑑𝑐

] = [

𝑋𝑐𝑙𝑖𝑝

𝑌𝑐𝑙𝑖𝑝

𝑍𝑐𝑙𝑖𝑝

] /(−𝑍𝑐) =  

[
 
 
 
 

−2𝑁𝑒𝑎𝑟

𝑤×𝑍𝑐
𝑋𝑐

−2𝑁𝑒𝑎𝑟

ℎ×𝑍𝑐
𝑌𝑐

(𝐹𝑎𝑟+𝑁𝑒𝑎𝑟)𝑍𝑐+2𝐹𝑎𝑟×𝑁𝑒𝑎𝑟

(𝐹𝑎𝑟−𝑁𝑒𝑎𝑟)𝑍𝑐 ]
 
 
 
 

  (2) 

RGBD Image Coordinate System [
𝑈
𝑉
𝐷

] =

[
 
 
 
 (𝑋𝑛𝑑𝑐 +  )

𝑤𝑖𝑑𝑡ℎ

2

(𝑌𝑛𝑑𝑐 +  )
ℎ𝑒𝑖𝑔ℎ𝑡

2
𝑍𝑛𝑑𝑐+1

2 ]
 
 
 
 

  (3) 

Note: 𝑁𝑒𝑎𝑟 and 𝐹𝑎𝑟 refer to the distance between the near/far clip plane and camera, respectively; 𝑤 and ℎ denote 

the width and height of the clip plane; 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 represent the width and height of the image. 

3.3 Data Annotation 

Data annotation is a fundamental task of object detection, and its accuracy will significantly 

influence the performance of deep learning models. Unlike data annotation for 2D object 

detection, which requires the object class and bbox coordinates in images, 3D data annotation 

is more complicated due to numerous irregular and unordered points. Therefore, a well-

recognised dataset format is essential to help 3D data annotation. The format of the KITTI 

(Karlsruhe Institute of Technology and Toyota Technological Institute) dataset (Geiger et al., 

2013) was adopted in this study, which is one of the most popular datasets used for 3DOD in 

autonomous driving. A label file involving 15 parameters is used to annotate data for 3DOD 

tasks (Figure 6). The first three parameters describe the object type, truncation, and occlusion 

degree of the object. The 5th-8th parameters depict the 2D bbox in the image. The 3D dimensions 

and location of the object are provided in the 9th-11th and 12th-14th parameters, respectively. 

Besides, two parameters denote the object orientation, namely the observation angle (alpha) 

and rotation angle (rotation_y) of the object in CCS, as illustrated in Figure 6. The label file 

will be processed to obtain the ground truth value of 3D bboxes of the objects in point clouds. 

 

Figure 6: Data annotation file based on the KITTI dataset 

Based on a complete understanding of the KITTI dataset format, our developed dataset was 

automatically annotated in conformity with the defined parameters. A Python-based script was 

developed to derive the 2D bbox and orientations from  ni  ’s ground truth values of 3D 
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dimensions and location. An essential benefit of the proposed VP-based dataset generation 

method was that the ground truth was available, and a 100% accurate annotation could be made 

regardless of complexities such as occlusion and truncation. Figure 7 provides examples of the 

3D annotation results in both normal and special cases. 

 

Figure 7: Examples of the 3D annotation results in different cases 

3.4 Dataset Validation 

Experiments were conducted using the F-PointNet model to validate the feasibility of the 

proposed VP-enabled pseudo-lidar point cloud dataset. F-PointNet was selected as it is one of 

the most popular and well-known 3DOD models, which creates frustum point clouds based on 

the 2D proposal from the image and then estimates the 3D bbox in the frustum (Qi et al., 2018). 

To evaluate the model performance, the average precision (AP) value was adopted as an overall 

detection performance indicator, which could be calculated from the precision-recall (P-R) 

curves. The experiment was conducted in a Linux system of a desktop computer with an Intel(R) 

Core (TM) i9-10900X CPU and an ASUS ROG RTX3090 GPU. Due to the small size of the 

dataset, it was randomly split into 80% training samples and 20% validation samples 

empirically. The model was trained with parameters as follows: the number of points was 1024; 

the learning rate and momentum were 0.0001 and 0.9, respectively; the batch size and the 

number of epochs were set to 32 and 150, respectively. To evaluate the impact of dataset size, 

the model was further trained on an enhanced dataset with data augmentation methods such as 

randomly shifting box centre and scaling width and height. 

4. Results and Discussion 

The experimental results are presented in Figure 8. The 3D bird view refers to the top view of 

3D bboxes in point clouds, which is usually adopted in autonomous driving. The intersection 

of union (IoU) was set to 0.5 in this study. The developed dataset achieved maximum AP values 

of 89% and 57.11% from the 3D bird and 3D views, respectively. Table 3 compares the F-

PointNet model's performance in the previous study and this study. Several findings can be 

derived from the results. First, the comparison showed a 6.5% increase in AP from the 3D bird 

view while a 19.5% decrease in AP from the 3D view. Meanwhile, the AP of module detection 

in the 3D bird view was higher than that in the 3D view, indicating that larger deviations were 

found in the vertical dimension (axis Y in CCS). This finding is mainly attributed to the 

ignorance of axis Y since the 3D bird view is, in essence, the 2D view from the top. The F-

PointNet model was proposed for 3DOD in autonomous driving, in which the objects (e.g., 

pedestrians, cars, and cyclists) all stand on the road with few variations in the vertical dimension. 

Therefore, axis Y was less restricted in the loss functions, leading to significant errors in the 

case of dynamic module installation. Further investigation on model mortification is required 

to adapt the model to module installation scenarios and improve the overall detection 
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performance. Second, data augmentation is an important and useful method to improve object 

detection performance with a small-scale dataset. The AP of module detection in the 3D bird 

and the 3D view increased by 68% and 71%, respectively. Since only a small dataset was 

developed in this study, it is believed that the model could be further improved with more data 

produced. 

 

Figure 8: Experimental results of model training and validation 

Table 3: Object detection performance of F-PointNet model in different datasets 

Dataset Ours Ours with data augmentation KITTI (Qi et al., 2018) 

AP (3D bird view) 53% 89% 83.53% 

AP (3D view) 33.36% 57.11% 70.92% 

5. Conclusions 

This paper proposes a VP-enabled method to develop a pseudo-lidar point cloud dataset for 

3DMD during module installation. The dataset was created through three steps of simulation 

model establishment, data generation, and data annotation and was tested using the F-PointNet 

model. The results demonstrate the feasibility and effectiveness of using pseudo-lidar point 

clouds for 3DMD, with achieved AP as high as 89%.  

The contributions of this paper are threefold. First, it proposes a VP-enabled approach to 

addressing the challenges of point cloud data collection and annotation in construction and 

develops a dataset for 3DMD as an example. This approach can serve as an innovative method 

to strengthen the comprehensiveness of image/point cloud datasets in construction. Second, this 

paper should contribute to the 3D perception of the module installation process by realising 

3DMD with an oriented 3D bbox, which can facilitate effective MiC site management with 

enhanced safety, efficiency, and quality. Third, this paper successfully extends the object 

detection task in the construction sector from 2D to 3D, providing a methodological foundation 

for the 3D detection of other construction objects (e.g., workers, tower cranes, and trucks). 

Nevertheless, there are limitations of this study which warrant future research. First, the 

developed small-scale dataset falls short to achieve a very high performance of module 

detection. The dataset should thus be enhanced by including more module types (e.g., L-shape 

modules) from diverse MiC projects. Real point cloud data should also be captured as data 

samples despite the difficulty in collection and annotation. Second, more 3DOD models should 

be selected to validate and benchmark the dataset by adapting to MiC scenarios. 
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