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Abstract. About half of the world’s population resides near coastlines, rivers, or inland streams. 
Climate change has led to more severe hydro-hazards (e.g., floods, storms) in these communities, 
causing significant economic damage and loss of life. Informed decision-making during flood 
evacuation, search and rescue, and sheltering depends on the availability of reliable information 
about the depth of floodwater in affected areas. While underestimating the water depth can be 
catastrophic, overestimating it may severely delay the deployment of goods and services. Our 
perception of risk and prior experience with floods influence how we interpret information to arrive 
at a decision. In this study, we utilize immersive virtual reality (VR) to reconstruct urban flood 
scenes and conduct a series of user studies to assess the human perception of flood risk on urban 
roads. This VR prototype is sought to improve human perception and communication of flood risks. 

1. Introduction 

Flood is the most frequent weather-related threat and the costliest natural hazard worldwide 
(Mizutori & Guha-Sapir, 2018). In the past 20 years, there have been nearly 5,000 flood events 
in the U.S., resulting in approximately 2,000 fatalities (American Climate, 2019). In 2021 alone, 
223 flood events occurred in the world, which is higher than the reported annual average of 163 
(Centre for Research on the Epidemiology of Disasters, 2022). Research points to asymmetric 
urbanization, growing coastal population, climate change, and deforestation as the main drivers 
of increased flooding worldwide (Bjorvatn, 2000; Sahin & Hall, 1996). Access to timely and 
accurate information is crucial in the aftermath of large-scale natural hazard events, such as 
floods and hurricanes. This information not only does support successful response and recovery 
(Gebrehiwot et al., 2019), but also aids in mitigation efforts and policymaking aimed at 
protecting people’s health and safety, and reducing property or environmental damage (Federal 
Emergency Management Agency, 2016; Public Safety Canada, 2010). 

Overlooking risk perception and communication, and public’s concerns and needs can 
contribute to the failure of flood risk management practices (Bodoque et al., 2019). To ensure 
the success of flood risk management, it is imperative to consider the varying perceptions and 
understanding of flood risk and to effectively communicate this information to all stakeholders. 
Given the high cost and risks associated with collecting human data in the field in the aftermath 
of large-scale disasters, simulating a flooded region in a virtual reality (VR) environment can 
help mimic risks and consequences in a controlled lab experiment, and perform targeted 
investigation to quantify and potentially improve flood risk perception (Mol et al., 2022). 
Previous research has focused on how demographics affect risk perception, but there is little 
research on how immersive flood simulation can influence human perception of flood risk. The 
authors have previously created an application based on artificial intelligence (AI)-driven visual 
recognition to assist in estimating the depth of floodwater in real-time (Alizadeh & Behzadan, 
2021; Alizadeh & Behzadan, 2022). This estimation is achieved by analyzing street-level 
photographs of standardized urban benchmarks, specifically traffic signs, using advanced 
convolutional neural networks. As an extension of this work, and in order to design a decision 
support tool for flood evacuation, it is critical to understand how people make decisions, and 
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human’s perception of risk is a driving decision-making factor in disaster settings (Botzen et 
al., 2009). In this paper, immersive VR is utilized to simulate a flooded urban environment to 
assess the human perception of flood risk.  

2. Literature review 

2.1 Flood risk perception  
The risk assessment process involves the measurement of actual risk by experts, taking into 
account factors such as hazard, community exposure, vulnerability, and capacities (Aerts et al., 
2018). On the other hand, the perceived risk is influenced by various factors, including 
exposure, prior experiences, community/individual understanding, cognitive thinking, and 
socio-political influences (Wachinger & Renn, 2010). Flood risk perception refers to the way 
in which individuals, communities, and organizations understand and respond to the risk of 
flood (Green et al., 1991). Perceptions of flood risk vary among people, potentially altering 
their exposure to risk. Considering this, disaster response and policymaking entities are paying 
increasing attention to the role of risk perception in order to navigate the development of new 
policies and technologies (Sjöberg, 2002). Previous studies have found a correlation between 
flood risk perception and socioeconomic factors including past flood experience (Botzen et al., 
2009), age and gender (Babcicky & Seebauer, 2017; Siegrist & Gutscher, 2006), education and 
knowledge (Qasim et al., 2015), and income and occupation (Peacock et al., 2005). While 
previous research has predominantly examined the impact of demographics on risk perception, 
limited research has been conducted on investigating the influence of immersive flood 
evacuation environments on human perception of flood risk. Informed by these findings, in this 
paper, the impact of socioeconomic factors and urban landmarks on flood risk perception is 
studied. 

2.2 Simulation of a disaster event in VR  
By creating a simulated environment that accurately replicates the experience of being present 
in a flooded area, VR can provide a safe and controlled space for individuals to develop an 
elevated understanding of associated challenges and risks. Unlike traditional tabletop 
experiments, through immersing individuals in a realistic flood scenario, VR can also help 
communicate the severity of the situation and increase awareness of the potential consequences 
of flood-related hazards. In recent years, VR and simulation technologies have been used to 
improve disaster preparedness and response. For example, Ooi et al. (2019) developed a VR-
based educational training system focusing on fire disasters and concluded that participants’ 
fire extinguishing start time was reduced by 10 seconds using this system. Ryu et al. (2007) 
developed a real-disaster video by combining real-time physical simulation and VR to provide 
a trial training for users in case of fire disaster. Aizhu et al. (2016) developed a VR training 
system for providing an evacuation experience in fire events. Xi and Smith (2014) enhanced 
the realism of VR-based fire evacuation training using gaming technology. Sermet and Demir 
(2019) developed a multi-player, voice-enabled VR gaming framework (called Flood Action 
VR) to improve flood risk awareness. Mol et al. (2022) utilized immersive VR to explore 
whether exposure to a simulated disaster can motivate individuals to invest in flood risk 
reduction measures and found that participants who experienced a virtual flood, invested 
significantly more in a designed flood risk investment game.  
In conclusion, risk assessment is a crucial process that involves measuring actual risk by 
experts, while the perceived risk is influenced by various factors. Flood risk perception is an 
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important aspect of risk assessment as it reflects on a person’s awareness and comprehension 
of environmental risks, and explains how he or she chooses to be exposed to a particular risk. 
Previous research has investigated the potential of immersive VR simulation in improving 
disaster preparedness and response via indicators such as disaster consciousness and risk 
awareness (Mol et al. 2022). This works utilizes a series of human subjects experiments to 
examine whether immersive VR experiments that reconstruct urban flood scenes can help 
assess human perception of flood risk and provide new insights that could inform the 
development of new policies and technologies in this field. 

3. Methodology 

3.1 VR Environment 

The virtual environment consists of a 3-by-5 block real scale 3D city, generated in ArcGIS 
CityEngine 2021. The model is imported into Unity to develop an immersive VR. The operation 
and physics in the VR environment are developed using the C# programming language. An 
Oculus Rift headset, with a resolution of 1280×800 (16:10 aspect ratio) and a 110° diagonal 
field of view, and built-in headphones and controllers are used to interface with the VR 
environment. To maximize user’s sense of immersion, a simulated water body element (with 
user-managed height to model various flood depths) is added to the environment, and a flowing 
water noise is played in the background through the Oculus Rift headphones. The computing 
platform used to run the model is a laptop computer with an Intel i9 processor, 32GB of RAM, 
and a GeForce GTX 1080 graphics card. In the VR scene, five types of common urban 
landmarks (i.e., cars, buildings, stop signs, fire hydrants, and trees) are also simulated and 
placed in various locations. Figure 1(a) presents a screenshot of the top-view and first-person 
view of the VR environment using the VR headset. 

 

Figure 1: (a) Top-view and first-person view (as seen through the VR headset) of the VR environment 
(b) participants in the VR experiment. 
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3.2 Participants 

Participants were recruited from Texas A&M University using university-wide emails and 
advertisements. The recruitment criteria restricted participation to respondents who were 18 
years of age or older. In total, from the 66 people who expressed initial interest, 51 participated 
in the study. Data collection in the lab started on February 2023, and the last participant was 
scheduled for a session on early April 2023. On the day of the session, each participant 
completed all three parts of the study (i.e., taking a pre-survey, conducting the VR experiment, 
and taking a post-survey). 

3.3 Procedure 

The study protocol was approved by the Institutional Review Board (IRB) of Texas A&M 
University. All surveys and lab experiments were conducted on Texas A&M University 
campus. At the beginning of the study, participants were asked to fill out a pre-survey, with 
information about their age, gender, ethnicity, and past flood experience (if any). Upon the 
completion of the pre-survey, a 5-minute VR experiment was conducted, where each participant 
used the Oculus Rift headset and hand controllers to navigate (i.e., virtually walk) in the VR 
environment and explore their surrounding areas, as shown in Figure 1(b). 

During the VR experiment, the participant was asked (at random locations) to stop and report 
his or her estimate of water depth at that location. The study personnel then logged the reported 
water depth and its corresponding location on the map in a data collection sheet. To arrive at 
this estimate, participants were instructed to obtain visual cues from any of the five urban 
landmarks of their choosing visible in the environment (i.e., cars, buildings, stop signs, fire 
hydrants, trees). Upon the conclusion of the VR experiment, the study personnel announced the 
end of the experiment and helped the participant remove the VR headset and controllers. The 
participant was then asked to fill out a post-survey, in which they ranked each of the five urban 
landmarks based on their visibility in the environment on a 5-point Likert scale (with score 1 
indicating the least visible, and score 5 indicating the most visible) as well as the frequency by 
which they had used that object a benchmark to guide them in estimating the water depth (with 
score 1 indicating the least frequently used, and score 5 indicating the most frequently used). 

4. Implementation and results 

Pre-survey results indicated that the age of participants ranged from 18 to 62 years, with 43.14% 
under or equal to 25 years old, and 56.86% above 25 years old. Gender distribution was almost 
equal among participants, with 43.14% female and 54.90% male (1.96% did not disclose their 
gender). In terms of ethnicity, 43.14% of participants identified as White or Caucasian, 5.88% 
as Black or African American, 43.14%, as Asian or Pacific Islander, 3.92% as multiple 
ethnicities or other, and 3.92% did not disclose their ethnicity. Only 25.49% of participants 
reported prior first-hand experience with flood events, while the majority (72.55%) had no prior 
experience, and 1.96% did not remember. Based on the results of the post-survey, on a 5-point 
Likert scale, cars received the highest average recognizability score of 4.45 by all participants. 
Next on the list were stop signs (average score of 3.37), buildings (average score of 2.90), trees 
(average score of 2.55), and fire hydrants (average score of 1.73). The same survey also 
revealed that participants most frequently used cars as a benchmark to estimate flood depth 
(average usability score of 4.61) likely due to their omnipresence and participants’ familiarity 
with their overall shapes and sizes. Stop signs were the second most utilized object (average 
score of 3.22), likely because they were also highly noticeable in participants’ surroundings. In 
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contrast, fire hydrants were the least frequently used objects (average score of 1.96) primarily 
due to their limited visibility in highly flooded areas. Table 1 presents the recognizability and 
the frequency of use of the five urban landmarks, as rated by the participants. 

Table 1: Average recognizability and usability scores of various urban landmarks on a 5-point Likert 
scale, based on post-survey results. 

Object Car Stop sign Fire hydrant Building Tree 

Most recognized 4.45 3.37 1.73 2.90 2.55 

Most used 4.61 3.22 1.96 2.57 2.65 

For each participant, the water level at the center point of the virtual scene was randomly 
selected between 50 cm and 150 cm. The average flood depth estimation error (FDEE) for each 
participant was then calculated as the average of difference between ground-truth flood depth 
and estimated flood depth, which was logged in the range of -83.33 cm and +70.56 cm, with an 
average of 9.09 cm. Using this convention, a positive FDEE value was considered 
underestimation while a negative FDEE value referred to overestimation. 
Analysis of collected data showed that participants under or exactly at the age of 25 years 
achieved a mean FDEE of 6.87 cm (2.70 in.) while this value for participants above the age of 
25 years was 10.77 cm (4.24 in.). With respect to gender, the mean FDEE was 6.88 cm (2.71 
in.) and 12.56 cm (4.94 in.) for male and female participants, respectively. Also, analysis 
indicates that the mean FDEE for White or Caucasian participants was 4.71 cm (1.85 in.), for 
Black or African American participants was -30.45 cm (-11.99 in.), for Asian or Pacific Islander 
participants was 19.55 cm (7.70 in.), and for Multiethnicity or Other participants was 18.75 cm 
(7.38 in.). Moreover, the mean FDEE based on the most used object was 11.80 cm (4.65 in.) 
for cars, -2.84 cm (-1.12 in.) for stop signs, 17.46 cm (6.87 in.) for buildings, and -20.41 cm (-
8.04 in.) for fire hydrants. With respect to past flood experience, the mean FDEE was 8.64 cm 
(3.40 in.) and 9.85 cm (3.88 in.) for participants with and without past flood experience, 
respectively. Also, the mean FDEE for those who participated in the VR experiment with a low 
water level at the center point (less than 1 meter) was 6.04 cm (2.38 in.), and for those with a 
high water level (more than 1 meter) was 11.79 cm (4.64 in.). 
A second round of statistical analysis was conducted in SPSS to assess if there is a statistically 
significant difference in FDEE mean and standard deviation (indicator of the degree of 
variability) between different groups of participants with respect to the independent variables 
(IVs) of age, gender, ethnicity, past flood experience, the most used object (to estimate flood 
depth), and average flood level. Firstly, the Shapiro-Wilk test was performed on both dependent 
variables (mean FDEE and standard deviation of FDEE) with results indicating that both 
variables are normally distributed (𝑝	= 0.377, and 𝑝 = 0.180 respectively). Next, 𝑡-test (for 
comparing two independent variables) and ANOVA tests (for comparing multiple independent 
variables) were performed. Further analysis within each group was conducted with respect to 
two subgroups of overestimators (n = 30) and underestimators (n = 21). In this context, over-
estimators mostly overestimated flood depth (more than half of their estimates were greater 
than the ground truth flood depths), and under-estimator mostly underestimated flood depth 
(more than half of their estimate were less than the ground truth flood depths). To achieve better 
data balance, participants who had an equal number of overestimation and underestimation 
were grouped as underestimators. 
Table 2 and Table 3 summarize the results of the statistical tests performed for all participants, 
and for each of the subgroups of underestimators and overestimators, respectively. According 
to the results, at 95% confidence level (𝛼 = 0.05), no significant difference (𝑝 = 0.325) was 
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found in mean FDEE for participants under or exactly at the age of 25 years (mean = 6.87 cm, 
SD = 33.40 cm) and participants above the age of 25 years (mean = 10.77 cm, SD = 27.62 cm). 
Also, no significant difference (𝑝 = 0.258) was observed in mean FDEE for male (mean = 6.88 
cm, SD = 33.12) and female (mean = 12.56 cm, SD = 26.52 cm) participants. Also, according 
to the results, no significant difference (𝑝 = 0.452) was found in mean FDEE for participants 
with no flood experience (mean = 8.64 cm, SD = 33.28 cm) and participants with past flood 
experience (mean = 9.85 cm, SD = 20.55 cm). Among different most used objects to estimate 
water depth, no significant difference (𝑝 = 0.254) was observed in mean FDEE obtained using 
cars (mean = 11.80 cm, SD = 30.09 cm), stop signs (mean = -2.84 cm, SD = 15.29 cm), 
buildings (mean = 17.46 cm, SD = 16.51 cm), and fire hydrants (mean = -20.41 cm, SD = 43.76 
cm). Furthermore, no significant difference (𝑝 = 0.250) was found in mean FDEE for 
participants with average water level less than 1 meter (mean = 6.04 cm, SD = 35.98 cm) and 
participants with average water level more than 1 meter (mean = 11.79 cm, SD = 23.85 cm). 

Table 2: Statistical significance of FDEE mean and standard deviation with respect to independent 
variables (* 𝑝 < 0.05). 

Test IV Groups N 

Significance 
(One-sided) 

Ave. 
FDEE 

St dev. 
FDEE 

𝑡-test Age 
<= 25 22 0.325 0.494 

> 25 29 

𝑡-test Gender 
Male 28 0.258 0.053 

Female 22 

ANOVA 
test Ethnicity 

White or Caucasian 22 0.034* 0.048* 

Black or African American 3 

Asian or Pacific Islander 22 

Multiethnicity or Other 2 

𝑡-test Past flood 
experience 

No 37 0.452 
 

0.151 
 Yes 13 

ANOVA 
test 

Most used 
object 

Car 41 0.254 0.489 

Stop sign 4 

Building 3 

Fire hydrant 3 

ANOVA 
test 

Average 
flood level 

<= 1 m (39.39 in.) 24 0.250 0.089 

> 1 m (39.39 in.) 27 

However, at 95% confidence level (𝛼 = 0.05), there is a significant difference (𝑝 = 0.034) in 
mean FDEE among ethnicity groups, e.g., White or Caucasian (mean = 4.71 cm, SD = 31.13 
cm), Black or African American (mean = -30.45 cm, SD = 27.11 cm), Asian or Pacific Islander 
(mean = 19.55 cm, SD = 25.40 cm), and Multiethnicity or Other (mean = 18.75 cm, SD = 35.94 
cm). Also, there is a significant difference (𝑝 = 0.048) in FDEE standard deviation between 
ethnicity groups, e.g., White or Caucasian (mean = 29.57 cm, SD = 10.16 cm), Black or African 
American (mean = 50.81 cm, SD = 11.14 cm), Asian or Pacific Islander (mean = 30.17 cm, SD 
= 13.94 cm), and Multiethnicity or Other (mean = 31.41 cm, SD = 0.045 cm). This finding 
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implies that individuals from different ethnic backgrounds may perceive flood risk differently 
which has been also reported in past literature (Babcicky & Seebauer, 2017). Specifically, Black 
or African American participants had significantly larger mean FDEE compared to Asian or 
Pacific Islander participants (𝑝 = 0.007), and had significantly higher degree of variability 
(quantified by FDEE standard deviation) in their risk perception compared to White or 
Caucasian participants (𝑝 = 0.006), and Asian or Pacific Islander participants (𝑝 = 0.008). 

Table 3: Statistical significance of FDEE mean and standard deviation with respect to independent 
variables in two groups of overestimators and underestimators (* 𝑝 < 0.05). 

Test IV Groups N 

Significance  
(One sided) 

(Underestimators) N 

Significance  
(One sided) 

(Overestimators) 

Ave. 
FDEE 

St dev. 
FDEE 

Ave. 
FDEE 

St dev. 
FDEE 

𝑡-test/ 
Mann-

Whitney test 
Age 

<= 25 10 0.351 0.494 12 0.387 0.816 

> 25 11 18 

𝑡-test/ 
Mann-

Whitney test 
Gender 

Male 11 0.041* 0.053 17 0.376 0.101 

Female 10 12 

ANOVA 
test/Kruskal 
Wallis test 

Ethnicity 

White or Caucasian 11 0.668 0.048* 11 0.604 0.599 

Black or African 
American 

3 0 

Asian or Pacific 
Islander 

6 16 

Multiethnicity or 
Other 

1 1 

𝑡-test/ 
Mann-

Whitney test 

Past 
flood 
exp. 

No 15 0.063 0.151 22 0.373 0.221 

Yes 
6 7 

ANOVA 
test/Kruskal 
Wallis test 

Most 
used 

object 

Car 15 0.240 0.071 26 0.696 0.140 

Stop sign 3 1 

Building 1 2 

Fire hydrant 2 1 

ANOVA 
test/Kruskal 
Wallis test 

Ave. 
flood 
level 

<= 1 m (39.39 in.) 13 0.056 0.089 11 0.114 0.970 

> 1 m (39.39 in.) 17 10 

Next, the Shapiro-Wilk test results reported that both dependent variables (mean FDEE and 
standard deviation of FDEE) in the subgroup of underestimators are normally distributed (𝑝	= 
0.055, and 𝑝 = 0.967 respectively). On the other hand, in the subgroup of overestimators the 
distribution of mean FDEE is normal (𝑝	= 0.729), however, the distribution of standard 
deviation of FDEE is not normal (𝑝 = 0.043). For non-normal distribution, Mann-Whitney test 
(for two independent variables) and Kruskal Wallis test (for multiple independent variables) 
were performed. Among White or Caucasian participants, overestimators (n = 11) achieved a 
mean FDEE of 27.84 cm, while this value for underestimators (n = 11) was -18.42 cm. 
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Meanwhile, all Black or African American participants (n = 3) underestimated flood depth with 
a mean FDEE of -30.45 cm. Among Asian or Pacific Islander participants, overestimators (n = 
16) achieved a mean FDEE of 31.03 cm, while underestimators (n = 6) was -11.07 cm. In the 
Multiethnicity or Other group, the overestimator (n = 1) achieved a mean FDEE of 44.16 cm, 
while this value for the underestimator (n = 1) was -6.66 cm. However, given the sample size 
of this last group, extra caution should be exercised when interpreting these results. Research 
cites that the disproportionate impacts of flooding on marginalized communities (such as Black 
or African American population groups) may lead to mistrust and a different perception of risk 
within those communities. Also, since a large portion of communities who live in or near flood-
prone areas consist of Black or African American residents, it is likely that this population 
group may perceive floods as a normal life event, thus moderating their risk perception. This 
normalization might stem from growing up in flood-prone regions and witnessing floods 
regularly. On the other hand, communities that have experienced floods in the past may have 
developed collective resilience and coping mechanisms which can contribute to a sense of 
confidence and lower perceived risk (Botzen et al., 2009) 
Meanwhile, further analysis revealed that underestimator males (n = 11, mean = -25.68 cm, SD 
= 23.90 cm) made significantly (𝑝	= 0.041) larger FDEE compared to their female counterparts 
(n = 10, mean = -8.46 cm, SD = 18.25 cm). On the other hand, no significant difference (𝑝	= 
0.376) was found in average FDEE among male overestimators (n = 17, mean = 27.95 cm, SD 
= 17.12 cm) and female overestimators (n = 12, mean = 30.07 cm, SD = 18.27 cm). While the 
sample size may be relatively small, these preliminary findings seem to (at least partially) 
support existing literature indicating that on average, females tend to worry about natural 
hazards more than males do (O’Neill, 2016). 

5. Summary and Conclusion 
In their previous work, the authors developed deep convolutional neural networks along with 
an application to support the ad-hoc estimation of floodwater depth by analyzing street-level 
photos of standardized urban benchmarks (i.e., traffic signs). This paper built upon that work 
by implementing immersive VR to simulate a flooded environment for assessing human 
perception of flood risk and evaluating how sociodemographic factors could potentially 
influence the perception of flood risk. Participants were asked to fill out two surveys and 
complete a 5-minute VR experiment in which they walked in a virtual flooded scene and 
estimated flood depth at random locations using benchmarking objects visible in the 
environment including cars, stop signs, buildings, fire hydrants, and trees. The objective of the 
VR experiment was twofold: (a) to identify the primary benchmarking object used by 
participants to estimate flood depth, and second, and (b) to examine the impact of various 
factors on flood risk perception during the evacuation process. Findings revealed that most 
participants used cars as their primary benchmarking object. However, in real-world settings, 
using cars as a benchmarking object may not be the best option since cars may not be readily 
visible in all places, their sizes may vary, and they can easily float away in floodwater. Further 
statistical analysis found no significant difference (𝑝	= 0.254) in mean FDEE when using 
different objects to estimate flood depth. These findings suggest that visually estimating the 
flood depth using a benchmarking object alone may not be sufficient, thus highlighting the need 
for designing a reliable and accurate tool to support decision-making in floods. The analysis 
also revealed a significant difference in mean FDEE and the degree of variability (FDEE 
standard deviation) among different ethnicity groups (𝑝	= 0.034, 𝑝	= 0.048). Specifically, Black 
or African American individuals had higher mean FDEE compared to Asian or Pacific Islander 
individuals (𝑝 = 0.007), and higher FDEE variability compared to White or Caucasian (𝑝	= 
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0.006) and Asian or Pacific Islander individuals (𝑝	= 0.008). A potential future direction of this 
research will involve a larger and more diverse sample of participants outside of university 
settings to better assess the impact of sociodemographic, vulnerability, and individual factors 
on flood risk perception, and provide more accurate insights into how different population 
groups may understand, communicate, and respond to such risk in the real world. 
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