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Abstract. Every architectural design is the result of many decisions. The more a design can be 

organized into loose coupled, robust, and reusable parts, the faster, flexible, and reliable is the design 

and decision-making process. The earliest organization of a design is an architectural concept. The 

objects of such are high-level, non-standard and change quickly. Various platforms for parametric 

definition of objects exist but they are not generally interoperable as they share no interfaces. This 

paper proposes a meta-model that allows to organize a design into non-standard objects by capturing 

semantics as a graph and compute it. Thus, enabling descriptive instead of imperative 

parameterization of architectural concepts. Such formalization offers new possibilities regarding 

authoring, testing, collaboration, and reuse. Further, computational tools (like version control, unit 

and integration testing, graph algorithms, graph rewriting, recommender systems, graph neural 

networks) become applicable. An interoperable prototype has been implemented and a use-case has 

been provided. 

1. Introduction 

Early decisions in planning of construction projects have the largest impact on the ecological, 

economical and social performance (Bragança et al., 2014). Despite the effectiveness of rule of 

thumbs in early design, exploring different architectural designs (AD) helps to find better 

solutions (Iano and Allen, 2022). An AD is mostly about organization of virtual objects for 

initiating processes in reality. It is expressed in a conservative sense through iconic models such 

as physical models, pictures and drawings, but in a wider sense it also includes analogue models 

such as a simulation model and symbolic models such as mathematical models (Roberts, P.H. 

et al., 2019). While finding form is the result of concrete modelling, it is intrinsically linked to 

cognitive modelling (Akalin and Sezal, 2009). Such a cognitive model can be both abstract 

through concepts and virtually concrete in shape. An AD is both geometric and semantic. 

Developing an AD, designing, happens in multitude of ways (Smith and Smith, 2014). Yet, the 

process rarely consists only of individual, unlinked and unstructured decisions. Often architects 

design with a guiding mental structure: an architectural concept (AC). Despite major 

architectural theories which provide mostly analytic and proactive methods for design space 

exploration (DSE) (Johnson, 1994), there is unsurprisingly no general definition of what an AC 

is, but instead there are many personal definitions (Eilouti, 2018; Vesnic, 2017). The 

development of ACs is normally a fast, minimal rule based and inaccurate process that is 

supported through formalization free tools such as sketching (Goldschmidt, 2017). This is a 

large distinction to a special purpose computation such as energy simulation, where 

standardized processes (U.S. Green Building Council, 1998) and data models exist (“gbXML,” 

2009). 

In contrast to an AC, an AD has a lot of requirements. Designing is an ill-defined problem 

solving where it is not about finding an optimal solution to a fixed question but finding an 

acceptable solution to changing questions (Purcell and Gero, 1996). In consequence, it is a non-

linear process that not only iteratively increases the requirement levels but can jump back at 

any time to an earlier state and change decisions from before (Grobman et al., 2010). Such 
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rollbacks mostly lead to repetitive tasks with high complexity. Assuming two inclined 

rectangular buildings | __ are merged into a L-shape building after the floorplans have already 

been separately developed, the chance of needing further adjustments at the intersection corner 

of the L shaped building is high. On the other hand, it is less likely that changes are needed in 

the end of the building.  Most design knowledge about AD is documented in an implicit way 

through plans or a Building Information Modelling (BIM) model which does not allow an 

automatic transfer of partial design knowledge. This requires even small adjustments where 

processes stay identical but only a change of values can trigger the entire pipeline again. 

Assuming a façade is moved 10cm more towards the outside in a late planning phase, this most 

likely won’t change the computational method of structural or fire safety calculations but 

instead it will change certain numbers in the same process. Despite all workflows being almost 

identical, the whole process must be restarted, containing a lot of manual repetitive work and 

communication efforts. 

The concretization of an AC into an AD is therefore a time-intensive task. Despite BIM having 

shown to have the potential to increase productivity in planning (Teo et al., 2015), overall 

productivity in the construction sector has stagnated (Reinventing construction through a 

productivity revolution - Full report, 2017) and the level of digitalization is among the lowest 

of all sectors (Digital America: A tale of the haves and have-mores - Full report, 2015). The 

purpose of this paper is not to aid in AC development, and it assumes that it has been already 

found, instead it aims to aid in the concretization of an AC into an AD. Examples of such 

concretizations are refinement of dimensions of spaces and objects, checking requirements such 

as programmatic compliance, computing preliminary performance indicators through 

simulation, creating drawings of lower scale, improving parallel design among different 

planners. 

Computers have a tremendous potential in computing repetitive processes where the structure 

of a process is not changing. In AD, this requires efforts of formalization of what AD knowledge 

is and how it can be transferred. 

1.1 Related work 

Depending on the domain, focuses are more knowledge-oriented about how to structure an AC 

or more formalization-oriented on how to compute an AD. Both are equally important and need 

to be brought together if a proposed method is not to be used analytically but proactively for 

designing. A promising approach for knowledge capturing among different domains are graphs, 

either with knowledge graphs, such as provided with (“Resource Description Framework 

(RDF),” 2014), or labelled property graphs (LPG), such as provided with (“Neo4j,” 2010). For 

this purpose, work is related even when not directly concerned with representing ADs but when 

methods for knowledge formalization are used in the context of graphs. 

Graph transformation 

When knowledge is represented by a large graph, then partial knowledge is directly represented 

as a partial graph. The formalism that helps in computing such relationships or even construct 

a large graph from partial graphs is called graph transformation/rewriting. The application 

possibilities to use this formalism for domain specific knowledge has already been recognized 

since long (Rozenberg, 1997; Agrawal et al., 2003). The shortcomings of adoption in the 

engineering domain remains due to the difficulty of abstraction of knowledge representation in 

general with the combination of geometric and semantic knowledge in specific, limited 

software implementations and even fewer learning resources (Kolbeck et al., 2022). 
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Architecture theory 

Architectural theories are mostly not intended to be formal enough to be directly translated into 

a formal structure. Yet, methods for designing complex things, which require high organization, 

that were developed by architects, have proven to be effective in providing methods to identify 

actors and to assign them concepts as also identifying relationships between them. This solves 

one of the major adoption problems. For this reason, some architectural theories have found 

wide applications outside of the domain of architecture (Molly Wright Steenson, 2022). A 

famous example is Alexander, with design patterns (Alexander et al., 1977)  that have been 

very successful in computer science through the adoption of the Gang of Four (GoF) (Gamma, 

1995). Patterns are to be understood as a meta-model of an AC. The main intent of patterns is 

to capture knowledge about modelling of the past and make it accessible for future projects. 

Despite their success for solving design problems in software architecture, their high level 

makes them hard to formalize and have so far only found little support inside software 

(Radermacher, 2000).  

Design theory 

In design theory, Gero has formalized design and processes with Function-Behaviour-Structure 

(FBS) (Gero, 1990; Gero and Kannengiesser, 2006). A very important concept is design 

prototypes which are prototypes that a designer can use to adapt in a new design without having 

to derive a completely new design from scratch. This allows designers to reuse experience from 

the past and accumulate with time. In the terminology of this paper, they can be seen as a map 

of AC with an associated AD from which the designer can reuse the AC in a new situation. 

However, despite the clear formal structure of FBS, when applying it to specific design through 

the need to conceptualize it, these lines can blur through the suggestive nature of language and 

the philosophical problem of differences between what is structural and what is intentional 

(Dorst and Vermaas, 2005). So far, FBS has not found its way into major software design tools. 

The idea of a prototype has been integrated in the proposed meta-model. 

Procedural modelling 

In the family of procedural modelling different computational methods for designing such as 

shape grammars (Stiny, 1975), L-Systems (Shih, 2020), cellular automaton (Krawczyk, 2002), 

agent-based systems (Rosenman and Wang, 1999) and visual programming (Burnett and 

McIntyre, 1995) have been developed, changed and/or applied.  

In shape grammars, knowledge is encoded in geometry and decisions are hence rules based on 

geometry. The major problem is that they are generally not computable due to the problem on 

how to generally represent geometry (Wortmann and Stouffs, 2018; Stiny, 2006). Further, these 

rules are often hard to control (Lipp et al., 2019) which is why they have been simplified with 

set grammars (Wonka et al., 2003). The simplification had great success in Computer Generated 

Imagery (CGI) in order to model large scale models where exterior is more important than 

interior (Müller et al., 2006; Parish and Müller, 2001). It has been implemented into major 

modelling environments (“Esri CityEngine | ArcGIS Desktop,” 2008).  Despite the possibility 

to maintain manual modification by identifying rule derivation trees, it has been difficult keep 

the user out of the loop (Lienhard et al., 2017). To make adoption into AD more approachable, 

investigation into layout modelling using constraint graphs have started (Para et al., 2021). 

L-systems rely on the design being encoded as a text sequence. Partial text sequence are 

recursively replaced by other sequences. To make a connection between text sequence and AD 
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required an incredible high level of abstraction. L-Systems is a good formalism for modelling 

self-similar objects such as plants, which AD is mostly not. 

A cellular automaton consists of a set of cells where each cell can have a finite number of states 

and neighbours. After every generation, a rule set describes the state of next generation of cells. 

By varying the initial state and evaluating the cellular automaton after a finite amount of time, 

computations such as computing an AD can be achieved. Cellular automations are good at 

simulating dynamic systems, whereas ADs are mostly not. 

All methods are very expressive in the sense that every AD can be decomposed by them in 

theory but knowledge but from a knowledge representation perspective, the abstraction needed 

can be very unintuitive, bulky, and not reusable. Challenges are how to evolve ADs, especially 

how to handle exceptions and how these can be preserved among variants, reuse partial 

knowledge, and collaborate with others. 

An exception in the family of procedural modelling are visual programming environments such 

as (“Grasshopper,” 2007; “Dynamo,” 2023; nortikin, 2023), that are regular programming 

environments inside of conventional modelling software which offer full control over the 

underlying modelling environment. They have gained increasing popularity in AD and proven 

to be powerful to parametrize self-contained objects (Hirschberg et al., 2020). The lack of 

structure in these tools make them evidently suffer from low scalability, poor interoperability, 

little reusability and bad collaboration possibilities (Davis and Burry Mark, 2011; Harding and 

Shepherd, 2017). 

BIM authoring tools 

More focused on later planning stages, BIM tools try to limit the number of objects with the 

goal to offer stable features with rich semantics. Abstraction mechanisms for customization like 

Families in Revit or GDL (Geometric Description Language) in ArchiCAD allow for full 

customization, controlled nesting, and strong coupling of custom objects. Although the goal of 

these interfaces is also to produce parametric objects, these interfaces follow a black box 

philosophy where designers mainly tweak instance parameters and rarely logic. This makes 

them unsuitable for generative design (Ma et al., 2021). Semantic expressibility through 

interoperable data-standards is a foundation for the proposed meta-model. 

Mechanical engineering  

Due to the high amount of functional requirements and high degree of standardization of 

individual parts, research in mechanical engineers has had a lot of interest in computational 

design synthesis (CDS) (Chakrabarti et al., 2011; Königseder et al., 2016). A wide range of 

methods regarding constraint formalization, functional aspects (Ma et al., 2013), assembly 

representation (Bahubalendruni et al., 2015) through AND/OR-trees (Homem de Mello and 

Sanderson, 1990), connectivity graphs, bond graphs or other vector based representations, or as 

port-based design (Liang and Paredis, 2004; Singh and Bettig, 2004) have been developed.  The 

idea of connectivity graphs and assembly through trees which is based on port-based design is 

later used in the proposed meta-model. 

Aerospace engineering 

In aerospace engineering the development of new variants is expensive, however, in fields such 

as satellite design it is a requirement (Schaefer and Rudolph, 2005). The completeness of such 

approaches show the challenges that grammar-based have but also that a multi-disciplinary 

integration of knowledge is possible such as in (Vogel, 2016). 
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Biology 

Port graphs (Andrei, 2008) originally coming from modelling molecular connections and more 

general Attributed Port Graphs (APT) (Ene et al., 2018) are a special case of the later proposed 

layout (graph) where the ports are not predetermined but instead defined through a function that 

potentially returns an unlimited amount of ports. 

Physics 

The highest abstraction with the most powerful definition are hypergraph rewriting systems 

(HGS) explored such as in (“The Wolfram Physics Project,” n.d.). They allow to capture 

possible multivalent relations between objects. 

Artificial Intelligence (AI) 

HGS also formalizes chatbots in AI with questions such as finding questions from answers 

(Vepštas, n.d.). When representing designs as hyper graphs, the same type of AI is applicable. 

1.2 Overview 

 

Figure 1: Context 

The goal of this paper is to allow parametric ACs to be formalized in an office, project, or 

personal level.  It extends formalization-free architectural design tools while trying to introduce 

the least amount of formalism and to offer the possibility of enriching them with semantic data 

in a platform-independent way. The goal is to unify the rapid prototyping and reusability of 

formal grammars that exploit the customization capabilities of parametric modelling 

environments and the advantages of BIM’s semantics while trying to have a knowledge 

representation that is close to the design domain. The purpose of semio is not to replace any 

existing modelling software or data-standard but act as additional interoperability layer on top 

of them. 
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2. Meta-model 

2.1 Concepts 

Figure 2: Meta-model UML diagram 

A parameter is a key-value pair with meta-data such as the context of the parameter. The 

context helps to build more complex data structures like lists, dictionaries, trees, or graphs 

which are native to platforms. A parameter can be numerical (integer, natural number, …), 

textual (string, enum) or geometrical (point, vector, line, curve, brep, …). Parameters together 

with a uniform resource identifier (uri) of a script form a plan. Plans are used to decouple 

specification of objects from object creation. They can be seen as a descriptive blueprint or a 

contract. The specification is bundled in a virtual semantical object, so called sobject, which is 

assumend to be parameteric and can return models of itself and interact with other sobjects 

through ports. A port is a description of a connection that returns a pose. A pose is a reference 

coordinate system for an object. To connect two objects, each object specifies a port and a 

representation of itself in form of a model that the other object will see during the connection 

process inside of a connection. Sobjects and connections form a layout. The layout can be 

interpreted as a property graph where the sobjects are the nodes and the connections are 

undirected edges. It can be seen as the DNA of a design. A design is a container for objects 

which are spatial occurrences of prototypes. A prototype is a collection of models which were 
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all produced by the same plans from the same definition and the same modifiers. A definition 

is a script for a sobject that returns prototypes and implements the port mechanism. All standard 

BIM objects in BIM authoring tools like wall and slab are in a wider sense definitions. While a 

definition is for creation of specific objects, a modifier is a general-purpose script that modifies 

models from the same language. A language is the schema on how to interpret the body of a 

model. 

A layout is further decomposed into rules and decisions. As a layout can be interpreted as a 

graph, graph rewriting becomes applicable. A rule is a pattern where the input is a layout along 

with parameters and the output is a modified layout. 

A script is a document that when given to a platform along with parameters, it provides outputs. 

A Python function, a Grasshopper script, or a 3D model with different design variants on 

different layers could all be scripts. A script therefore doesn’t necessarily need to be executable 

in a traditional sense like a conventional program, but it can be as simple as a lookup table that 

is interpretable by a platform which is normally a software that can process the script. It can be 

seen as a function. In order that these scripts work seamlessly together and remain swapable, 

they need a common understanding of inputs (parameters) and outputs. Due to the high-level 

abstraction of what a script is, it is possible to parametrize a layout and resolve it inside of 

script. Such a script can be used e.g., as a new definition which can be used for a sobject in a 

higher-level layout. Recursion can be further used to decouple individual scripts. 

3. Use-case: capsule tower 

  

Figure 3: metabolism exhibition flyer (left)1, Nakagin Capsule Tower (right)2 

To exemplify how the meta-model works, an example based on the Nakagin Capsule Tower 

and ideas of the Metabolism movement was modelled. A fictive and simplified design process 

is illustrated. The design team consist of Enzo, Sho, Ken, Yono and Masa. Enzo is the head of 

the group and had an idea of a high-density city that can organically adapt to the changing needs 

of its habitants. When Enzo presents his ideas to the group, Sho has an idea of a modular system 

consisting of towers as vertical infrastructure and capsules as providers of function. The team 

has agreed to pursue with the ideas and develop a prototypical system serving the first main 

function of the city: providing a home to people. To keep things simple, they start with single 

 
1 https://www.mori.art.museum/english/contents/metabolism/about/ (Accessed: 15.02.2023) 
2 https://www.tokyotimes.org/archives/nakagin12.jpg (Accessed: 16.02.2023) 

https://www.mori.art.museum/english/contents/metabolism/about/
https://www.tokyotimes.org/archives/nakagin12.jpg
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room type capsule system which they plan to extend in the future with larger capsules which 

are interconnected to form larger apartments. Ken proposes to develop the capsule system 

further and Yono wants to focus on the towers. 

 

Figure 4: Shos tower-capsule AC (left), Kens capsule AC (right) 

After fifteen minutes, Sho has the first definition ready which doesn’t contain any internal logic yet, 
but has already the shape, so Ken can use it for testing preliminary designs. Ken comes up with a 

general rule that stacks capsules over each other. Ken has advised Sho and Yono that their definitions 

must meet on the door. After some time, the shaft is ready and version one is explored. 
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Figure 5: Version one of capsule tower  

When they show it to Enzo, he want’s a higher density and suggest doubling the number of 

capsules by expanding the capsule system to have a second type with the entrance in the back. 

Sho starts to work on expanding the capsule, Ken adds the second door per floor and adjusts 

the default values of the shaft. 
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Figure 6: Version with updated capsules 

Figure 7: Version three 
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4. Software prototype 

To demonstrate the meta-model an open-source prototype has been implemented3. A backend 

for the computation of layouts, a user-interface (UI) to view and request designs and an 

extension for Grasshopper to adapt scripts have been written. The backend is a microservice 

architecture with currently five services. The meta-model has been defined over the 

programming-language independent Interface Definition Language (IDF) protobuf and service 

clients and servers communication was realized over gPRC. The prototype is architecturally 

designed for extensibility and interoperability. 

 

Figure 8: Implemented components 

 
3 https://github.com/usalu/semio 
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5. Discussion 

5.1 New possibilities 

The complexity and size of a BIM model are high. A Common Data Environment (CDE) only 

manages the infrastructural complexity, but the intellectual complexity is still given. A common 

approach to solve this issue is to decompose the model into disciplines and recompose it on 

data drops. With such an approach the structural engineer has liability for all standard objects 

that have a structural function. This brings a couple of coordination problems e.g. clash 

detection (Akponeware and Adamu, 2017). Most of the times rules and fuzziness are 

agreements between disciplines to avoid clashes and optimally a result of a clash detection is a 

detection of which rule was broken instead of simply delivering the objects that collide. With 

semio on the other hand, the complexity is decomposed according to project specific objects 

and the recomposition is gradually happening through rules, decisions, definitions, and 

modifiers. These additional levels offer various new possibilities. 

Collaboration 

Every script can be created, updated by a separate person. This allows to parallelize processes 

and offers possibilities for shorter development cycles. Versioning of partial scripts helps in 

understanding overall changes and increases explainability. 

Testing 

If a rule produces a partial layout where objects collide, then this can be resolved much earlier.  

Further a new layout can be tested for graph morphisms and if all local matches satisfy a pre-

tested layout, then the chances that the total layout will be collision free are higher. Besides 

collision testing, functional testing according to discipline e.g. load requirements for certain 

structural objects, loop temperature for hvac-systems for connections or sound insulation for 

objects. 

Authoring 

Once the design has been architecturally decomposed and first scripts have been writing, it is 

easy to modify parameters and change rules. This allows for great design space exploration 

possibilities that can be combined with a What You See Is What You Get (WYSIWYG) UI 

such as in an Augemented /Virtual Reality (AR/VR). Further Artificial Intelligence (AI) are 

possible e.g., recommendation systems based on similarities of layouts become or Graph Neural 

Networks (GNN) can be predicting rules or layouts. Other Machine Learning (ML) methods 

can be used to predict parameters, find patterns in layouts, or be used as a surrogate model for 

a script to reduce computing times. 

Reusability 

The highest level of abstraction with the highest generality are modifiers. They offer the greatest 

level of reuse. The second level of abstraction are definitions. They are self-contained and can 

easily be reused in a new project. To reuse a layout all definitions and modifier must be present. 

They can be replaced with new scripts, but the layout is most likely dependent on their 

functionality. The largest impact of reducing effort is achieved when you can reuse rules. They 

can with small adjustments have a great effect on the design. Overall, the general reusability 

depends on how well the overall design is decomposed and how well the interfaces are cut. 
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5.2 Open research questions 

Designs are by nature hard to decompose because it is a system of a lot of objects with a lot of 

interlinked functionalities e.g., two rooms share only one wall which exists on its own. When a 

design is prefabricated then objects are more and more visible, but they are not always equal to 

the mental objects that architects used during planning. One way to solve such issues is by 

setting definitions for virtual objects which are not necessarily visible in the end. A void can be 

modelled as an individual definition or as a modifier if it only affects one other object. 

Further can rules not only add new sobjects as in set grammars but also remove some. This is a 

powerful mechanism but from a complexity standpoint this is dangerous and can fast lead to 

infinite recursion when misconfigured. Advantage and disadvantages must be examined on test 

cases and patterns should be developed as best practices.  

The views on what an AD is differ depending on the domain. A layout that can derive e.g. a 

structural and energetical model needs to provide a mechanism for attaching domain specific 

knowledge not only to sobjects and connections but also allow to map layouts between each 

other. Data-models and methods for assisting such knowledge representation need to be 

developed. 

6. Conclusion 

This paper shows that a decomposition and recomposition of a design through the proposed 

meta-model into non-standard objects while keeping interoperability is possible. A use-case 

could exemplify that process. New possibilities that follow from applying this new method were 

anticipated but need still need to be proven. The new dynamic and problems that appear with 

such a design method need to be case-based compared with conventional approaches to evaluate 

the use that the increased effort of formalization brings. 
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