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Abstract. This research introduces an approach to predict the wind pressures for full-scale low-rise 
buildings using few-shot learning and quasi-steady theory. The proposed few-shot learning model 
can extrapolate wind pressure predictions from the model-scale to full-scale measurements. The 
extrapolation capability is typically beyond what is expected of conventional machine learning 
techniques such as artificial neural networks, random forests, and support vector machines. In 
addition, the quasi-steady theory-based model is applied to generate the accurate estimation of wind 
pressure coefficient data under unmeasured wind directions. The generated data helps improve the 
few-shot learning prediction performance. In this research, 3% of the full-scale measurements were 
used for training the model, and the remaining 97% of data points were used to test the prediction 
performance. The proposed model shows a better performance than the baseline model by reaching 
MSE and R-squared values equal to 0.047 and 0.740, respectively. 

1. Introduction 
In North America, low-rise light-frame buildings are one of the most common and most 
vulnerable building types under extreme wind events (He et al. 2017, van de Lindt and Dao, 
2009). Therefore, proper evaluation of wind pressures on the roofs of these structures is 
important. Wind tunnel tests are commonly used to estimate wind pressures for low-rise 
buildings. By conducting wind tunnel tests, it is possible to accurately simulate realistic wind 
conditions and calculate surface pressure estimations. However, when applying the wind tunnel 
test results to a full-scale building, the scaling issue cannot be ignored. Specifically, the wind 
tunnel tests could underestimate the wind-induced pressures on the roof corner and edge zones 
(Cheung et al. 1997, Tieleman et al. 1981). The mismatch of wind pressures between the field 
measurements and small-scale wind tunnel tests sometimes exceeds 50% (Wang et al. 2020a, 
Coffman et al. 2010). To obtain a sufficiently high Reynolds number to capture realistic airflow 
characteristics, a large-scale model is usually required (Moravej, 2018). However, it is a time-
consuming and expensive process to build a large-scale model and place high-resolution 
measuring taps. To reduce the reliance on experiments, computational fluid dynamics (CFD) 
(Aly and Gol-Zaroudi, 2020), parametric studies (Muehleisen and Patrizi, 2013), and Partial 
Turbulence Simulations (PTS) (Estephan et al. 2021) have all been used to simulate the wind 
pressures on low-rise buildings. In addition to these techniques, in more recent years, machine 
learning (ML) has become a more popular method for predicting wind pressure coefficients 
with low reliance on experimental tests or costly computational simulations. 
The state-of-the-art ML techniques mainly focus on predicting wind pressures based on the 
existing wind tunnel test datasets. For a typical ML algorithm (e.g., random forest, artificial 
neural network), training and testing sets usually have a similar joint probability distribution 
𝑝(𝑥, 𝑦) over the predictors 𝑿 and target variable(s) 𝒚. To satisfy this assumption, the training 
and testing datasets are usually randomly split in a ratio of 7:3. Therefore, both the training and 
test data points will be sampled from the wind tunnel dataset in any traditional ML algorithm. 
For example, Gavalda et al. (2011) trained an artificial neural network (ANN) model based on 
the wind tunnel data. The trained ANN model can interpolate the prediction for unmeasured 
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wind directions that were within the range of the measured wind directions included in the 
dataset. Lang et al. (2021) used the random forest algorithm to predict wind pressure 
coefficients for high-rise buildings. They tested the model’s performance for interpolating the 
wind pressures for measuring taps where the coordinates are within the range of the surface 
coordinates of the training set. Weng and Paal (2022) used the gradient-boosting decision tree 
to predict the wind pressures for non-isolated low-rise buildings based on the wind tunnel data. 
However, model scale is not considered as one of the predictors in this approach. In short, these 
state-of-the-art ML applications for wind pressure prediction might not be able to solve the 
scaling issue. Even if the prediction is sufficiently accurate, there still exists a mismatch 
between model-scale and full-scale (and thus, real-world) prediction. Recently, Weng and Paal 
(2023) proposed a few-shot learning approach to extrapolate the wind pressures from model-
scale to full-scale measurements. However, only the wind pressures of roof corner taps are 
analyzed, and the prediction accuracy is not high. In short, there still exists a gap in using ML 
techniques to predict the wind pressures for full-scale experiments based on the model-scale 
wind tunnel tests. 
To arrive at a highly accurate predictive model, capable of extrapolating from model-scale data 
to full-scale specimens, this research incorporates few-shot learning with a parametric study 
based on quasi-steady theory. Few-shot learning (FSL) is an ML approach that trains the 
machine to learn a new, similar task using a limited number of labeled data samples (Fink, 
2004). In this study, the FSL model first trains a meta-learner based on a large amount of model-
scaled wind tunnel data points. Then, the trained model can be quickly adapted to full-scale 
prediction with only a few full-scale experimental data points used in the training dataset. The 
key to successfully predicting the wind pressures for the full-scale buildings is to have a good, 
well-trained FSL meta-learner. The quasi-steady (QS) model will be used to interpolate the 
wind pressures under unmeasured wind directions for the model-scale dataset. The interpolated 
data points will then expand the dataset used for training the FSL meta-learner and finally reach 
a better prediction performance for full-scale measurements. 

The novelty of this research could be summarized as follows: 
l It is the first time that quasi-steady theory is integrated with ML techniques in the wind 

engineering field. 
l It is the first time that a few-shot learning technique is used to predict the wind pressures 

over the entire roof area. 
The remainder of this manuscript is organized as follows: Section 2 introduces the background 
of the FSL technique implemented in this work. Section 3 introduces the datasets and the 
framework of the proposed QS theory-enhanced FSL model. Section 4 shows the prediction 
results. Section 5 presents the conclusions and future work. 

2. Theoretical background 
Few-shot learning is a class of machine learning techniques which can make predictions based 
on only a limited number of data samples (Wang et al. 2020b). Meta-learning is the most 
widely-used framework for few-shot learning (Chen et al. 2021). Therefore, this research 
chooses meta-learning as the approach to achieve the goal of few-shot learning. Meta-learning 
also called “learning to learn”, aims to train a meta-learner that can efficiently adapt to a similar 
unseen new task using limited data. Meta-learning has been widely used to extrapolate the 
prediction to out-of-distribution tasks (Finn et al. 2017, Alajaji and Alhichri, 2020). Model-
Agnostic Meta-Learning (MAML) and “Reptile” are the most commonly used meta-learning 
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algorithms proposed by Finn et al. (2017) and Nichol et al. (2018), respectively. Both 
algorithms sample the dataset into many small tasks used to train a meta-learner. Then several 
gradient decent steps are applied based on the limited number of labeled unseen data samples. 
After the gradient descent steps, the updated learner should be able to efficiently predict unseen 
data. Compared to MAML, Reptile has two advantages. Firstly, Reptile is more 
computationally efficient. In MAML, the second-order derivative needs to be calculated in the 
gradient decent steps which is computationally expensive. However, the Reptile algorithm 
bypasses the need to compute the second-order derivative terms while still maintaining good 
prediction performance. Secondly, the Reptile algorithm is easier to implement since there is 
no need to split the task into query-support sets. Therefore, for this research, the Reptile 
algorithm is selected as the few-shot learning algorithm. In order to prevent any confusion, 
throughout the remaining part of this manuscript, the term "few-shot learning" will specifically 
refer to the Reptile algorithm. 

 
There are three sets of data used in any meta-learning problem: the training set, meta-training 
set, and meta-testing set. Assume there are two dataset sources (i.e., 𝐷! and 𝐷") with different 
distributions, where dataset D2 is the dataset of interest. The first dataset 𝐷!  serves as the 
training set. The second dataset 𝐷" is divided into two parts: the meta-training set (𝐷",$%), and 
the meta-testing set (𝐷",$& ). Specifically, a very small portion of the second dataset 𝐷"  are 
randomly selected as the meta-training set 𝐷",$%. The remaining large portion of 𝐷" serves as 
the meta-testing set 𝐷",$& which will be employed to comprehensively evaluate the performance 
of the model on the dataset of interest. Corresponding to these three sets are two training phases 
and a testing phase. The first training phase is named the “training stage” while the second 
training phase is designated the “meta-training stage”.  Figure 1 illustrates the two-stage training 
procedure. In the first iteration of the first training stage, a random initial model parameter 𝜙' 
is assigned. The first dataset 𝐷! is randomly split into 𝑛 number of small tasks (𝜏!, 𝜏", …, 𝜏(). 
This sampling procedure is represented by the dashed green arrows in Figure 1. In the first 
training stage, model parameters are first updated via gradient decent steps on the sampled small 
tasks. This model parameter update direction is called the “inner-loop” update direction which 
is shown by the solid blue arrows in Figure 1.  In other words, in the inner-loop update direction, 
the model parameters update in the order of 𝜙' → 𝜙)! → ⋯	→ 𝜙)" . After the inner-loop 
update, the model parameters are updated in the direction connecting 𝜙'  and 𝜙)" . This 
direction is termed the “outer-loop” update direction and is shown by the black solid arrows in 
Figure 1. The red solid arrow in Figure 1 represents the final model parameter update direction 
for each iteration. The final update direction is the same as the outer-loop update direction but 
applies an additional learning rate to avoid the over-fitting issue. Then the obtained final model 
parameter of the first iteration (𝜙0!) serves as the initial model parameter of the next iteration. 
After performing the same procedure for all 𝑚 iterations, the first training stage is finished and 
𝜙0* is obtained as the vector of model parameters for the meta-learner.  

 

Similar to the first training stage, in the meta-training stage, the meta-training set 𝐷",$%  is 
randomly split into 𝑛 small tasks (𝜏*&$+,!, 𝜏*&$+,", …, 𝜏*&$+,(). The final model parameters 
𝜙0* obtained from the first training stage serves as the initial set of model parameters for the 
meta-training stage. In the meta-training stage, the model parameters are only updated along 
the inner-loop direction via training on the sampled small tasks. The red circle in Figure 1 
represents the last set of updated model parameters (𝜙0, ) which will be used to assess the 
prediction performance on the meta-testing set. The goal for the first training stage is to train a 
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meta-learner that can understand the general information across different tasks from 𝐷!. Then, 
the goal of the meta-training stage is to fine-tune or optimize the trained learner based on limited 
data points, so that it can quickly adapt to a new unseen task or distribution. The objective 
function of this optimization problem is shown as follows (Eq. 1): 

𝑎𝑟𝑔𝑚𝑖𝑛-𝐸)[ℒ)(𝑈).(𝜙))]                                                   (1) 

Where ℒ)(𝑈).(𝜙)) is the loss for task 𝜏 after 𝑘 stochastic gradient descent (SGD) steps. 

 

Figure 1:   Two-stage training procedure for meta-learning 

3. Dataset and framework 
There are two datasets used in the research. The first dataset is the Wall of Wind (WOW) dataset 
(Chowdhury et al., 2017) which has a series of large-scale wind tunnel experiments with five 
different model scales (1:100, 1:50, 1:20, 1:10, and 1:6). The second dataset is the full-scale 
test data from the Texas Tech University (TTU) aerodynamic dataset (Smith et al., 2018). The 
WOW and TTU datasets both have the same building geometry and measurement tap layout. 
Also, both datasets use the wind pressure coefficients (𝐶/ ) to represent the wind-induced 
pressure as follows (Eq. 2): 

𝐶/(𝑖, 𝑡) =
/(1,$)

'.456#$%"
&                                                            (2) 

Where 𝐶/(𝑖, 𝑡) is the wind pressure coefficient of tap 𝑖 at time 𝑡; 𝑝(𝑖, 𝑡) is the wind pressure of 
tap 𝑖 at time 𝑡; 𝜌 is the air density; and 𝑈*&+( is the wind speed measured at the mean roof 
height. 
 
The predictor of the proposed model includes the wind characteristics (i.e., wind speed, 
turbulence intensity, wind direction), scale, and tap coordinate information. The tap coordinate 
information is converted into dimensionless variables to avoid the influence of scale changes. 
Specifically, the centroid of the entire roof area is set as the origin point. The tap coordinate is 
represented by 𝑋/𝐻  and 𝑌/𝐻 . 𝐻  denotes the building height while 𝑋  and 𝑌  represent the 
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distance between the chosen tap and the origin position along the width and length of the 
building. The possible values of each selected predictor are demonstrated in Table 1. All the 
variables in Table 1 are numeric values. All the scale values are converted to float values during 
the data pre-processing stage. For example, the 1:100 scale is converted to 0.01 and the 1:50 
scale is converted to 0.02. In total, the WOW dataset contains 28,523 data points from the wind 
tunnel experiments. The TTU dataset contains 2,430 data points from the full-scale 
measurements. 

Table 1:   Values of selected predictors. 

Predictors Potential values 

𝑋/𝐻 0, ±0.39, ±0.77, ±0.96, ±1.15 

𝑌/𝐻 ±0.19, ±0.57, ±0.95, ±1.33, ±1.71 

Scale 1:100, 1:50, 1:20, 1:10, 1:6, 1:1 

Wind direction 0° to 195° at a 3° interval 

Wind speed (𝑈'()*) 7.66, 13.62, 14.8, 18.3, 19.9, 20.7 (m/s) 

Turbulence intensity (𝐼+) 0.102, 0.110, 0.181, 0.197, 0.199, 0.216 

 
Although the few-shot learning model only needs a very limited number of data samples from 
the second dataset in the training process, it still needs plenty of data samples from the first 
dataset to train the meta-learner. One method for expanding the dataset is to generate wind 
pressures using parametric equations derived from existing empirical or mechanical 
relationships. Wu and Kopp (2016) considered the wind direction as the most significant factor 
influencing the wind pressure coefficients. They proposed a QS theory-based wind pressure 
coefficient estimation equation to represent the correlation between wind direction and wind 
pressure coefficients using the following Fourier series (Eq. 3): 

𝐶/(𝜃) = ∑ 𝑎!. cos(𝑘𝜃) + 𝑏!. sin(𝑘𝜃)
7!
.8'                                      (3) 

Where 𝜃 is the wind direction; 𝐶/(𝜃) is the wind pressure coefficient under wind direction 𝜃; 
and 𝑎!. and 𝑏!. are Fourier coefficients. 
The QS estimation equation is able to estimate the instantaneous area-averaged roof surface 
pressures considering the variation of magnitudes and wind directions measured at the reference 
location. The QS estimation equation is derived based on several physical assumptions. Wu and 
Kopp (2019) explained the physical assumptions based on simple algebraic manipulations of 
the time-averaged integral momentum equation for turbulence flow. Some studies have 
indicates that the QS estimation equation can reasonably compute the mean pressure coefficient 
(Richards and Hoxey, 2004, Wu and Kopp, 2016, 2019). To apply the QS model equation in 
this approach, the WOW dataset is first split into many subsets grouped by the scale and tap 
coordinate information. Therefore, in each subset, the wind pressure coefficient varies with the 
wind direction. Then, the number of terms for the Fourier coefficients (i.e., 𝑘) is set as seven. 
In other words, there are seven terms for 𝑎!. and 𝑏!.. By fitting the data points in the subset, a 
unique group of Fourier coefficients is produced for each subset. Then, the fitted QS theory-
based estimation equation can be used to expand the dataset. Specifically, the WOW dataset 
includes data extracted at 3° intervals in the wind direction.  With the updated estimation 
equation, this interval decreases from 3° to 1° by evenly generating data points for each subset. 
The WOW dataset contains 28,523 data points in total, and the QS theory-based estimation 
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equation adds 31,500 data points to this dataset. Then, adding the data samples generated from 
the QS estimation equation can help the model construct a better learner. With a well-trained 
learner, the prediction for the out-of-distribution data will potentially be more accurate.  

 
The initial WOW dataset and QS model generated dataset are combined and then used as the 
first dataset 𝐷! (as denoted in the previous section and Figure 1). Then, a small portion of the 
TTU dataset serves as the meta-training set 𝐷",$%, and the remaining large portion of the TTU 
dataset is used as the meta-testing set 𝐷",$&. Different from the previous work presented by 
Weng and Paal (2023), the data points in the meta-training set are only selected from a limit 
number (𝑛) of taps (rather than all the taps). The selected number of taps (𝑛) is a predefined 
number that ranges from one to 90 (i.e., all the taps). In this study, the data points in the meta-
training sets are drawn from 20 taps (i.e., 𝑛 = 20) for demonstration purposes. These 20 taps 
are chosen from the center and endpoints of each row of taps on the roof surface; then the data 
points in the meta-training set are randomly selected from these taps. All the unselected data 
points form the meta-testing set. The benefit of limiting the data points to be chosen only from 
the pre-selected taps is that no information about points other than the selected taps is required. 
Only a very low resolution of measuring taps is required for the chosen locations when 
implementing the proposed model in real-world scenarios (and thus, we can greatly reduce the 
complexity of future testing regimens). The detailed framework of the proposed algorithm is 
shown in Figure 2. Before splitting the dataset, the Max-min scaler function is first performed 
to scale each feature in the dataset. In this work, 20 out of 90 taps are first selected. Then 80 
data points from these 20 taps are randomly selected. In other words, the size of the meta-
training set is 80, which represents only 3% of the total data in the TTU dataset. As shown in 
Figure 2, after splitting the training set, meta-training set, and meta-testing set, the training set 
is first applied to train a meta-learner. In this work, the multilayer perceptron (MLP) is selected 
as the meta-learner. The mean squared error (MSE) loss is selected as the loss function. When 
the two-stage training process is completed, the meta-testing set is applied to test the prediction 
performance on the full-scale measurements. 

 

Figure 2:   Framework of the proposed few-shot learning model 
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4. Results and discussion 
The mean-squared error (MSE) and the coefficient of determination (R2) are selected as the 
evaluation metrics. A smaller MSE value indicates a better prediction performance while a 
higher R2 value represents a higher correlation between predicted and observed values. The 
final goal of this work is to improve the prediction performance of the few-shot learning model 
by incorporating QS-model-generated data points. Therefore, the previous work presented by 
Weng and Paal (2023) is employed as the baseline model for comparison. The baseline model 
and the proposed few-shot learning model utilize the same 80 data points as the meta-training 
set, and the meta-testing set is consistent across these two models. Compared to the baseline 
model, the proposed model has a larger training set, with the inclusion of the QS-model-
generated data points. The mean wind pressure coefficient (𝐶/,*&+() is selected as the response 
variable and the predictors are mentioned in Table 1. The proposed few-shot learning model is 
implemented in Python on a Windows system with a 2.60 GHz Intel Core i7-9750H processor. 
The training and testing process for the baseline model and proposed few-shot learning model 
take approximately 600 and 630 minutes to complete, respectively. The MSE and R2 metrics 
are defined in Eq. 4 and Eq. 5 as follows: 
 

𝑀𝑆𝐸 = 	 !
7
∑ (𝑦9:;,1 − 𝑦/%&<,1)"7
1                                                    (4) 

𝑅" = 1 −
∑ (>,-.,0?>12$3,0)&4
0
∑ (>,-.,0?>,-.@)&4
0

                                                         (5) 

Where 𝑁 denotes the size of the meta-testing set; 𝑦9:;,1 and 𝑦/%&<,1 denote the observed ground 
truth and model prediction for 𝑖th data in the meta-testing set, respectively. 

 
The MSE and R2 values for the baseline model are equal to 0.057 and 0.685, respectively. The 
proposed QS theory did in fact enhance the few-shot learning model which is represented by 
the MSE value equal to 0.047 and R2 value equal to 0.740. The scatter plots of the relationship 
between prediction and observation for the meta-testing set are shown in Figure 3. The solid 
red line in Figure 3 (a) and (b) signifies the zero-error line which means the prediction equals 
observation. Since the negative sign for the 𝐶/,*&+( values only represents the direction of the 
pressure, the proposed model overpredicts the 𝐶/,*&+( if the point lies above the red line. On 
the contrary, if the point is located below the red line, the proposed model underpredicts the 
𝐶/,*&+( value. Several observations can be drawn by comparing Figure 3 (a) and (b). First, the 
proposed QS-theory-enhanced few-shot learning model has a higher R2 and lower MSE than 
the baseline model. The increase in prediction accuracy is most noticeable for data points with 
observation values between -2 and 0. These data points are closer to the zero-error line 
compared to the prediction in the baseline model. Secondly, when compared to the baseline 
model, the proposed model does not improve the prediction performance of extreme value 
cases. Specifically, Figure 3 (a) and (b) show that the predictions are very close for data points 
with observations greater than 0 or less than -3. These data points are from the roof corners 
which usually experience the highest wind pressures. One possible explanation for the poor 
prediction for these data points is that there is still a lack of sufficient extreme value data points 
accounted for in the training sets. Even after generating the data points to expand the training 
set, the amount of data points that have extreme values is still not large enough for the meta-
learner to ascertain the wind pressure performance. Overall, except for these extreme values 
cases, there is still a noticeable improvement in the proposed model. Since the majority of the 
data points shown in Figure 3 (b) are close to the zero-error line and the prediction errors mainly 
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come from the data points with extremely high wind pressure coefficient values, it is reasonable 
to conclude that the proposed model is reliable for predicting wind pressure for full-scale 
buildings in most cases. However, further improvement is needed to handle extreme value cases. 

 

Figure 3:   Mean wind pressure coefficient prediction: (a). Baseline; (b). QS theory enhanced few-shot 
learning. 

5. Conclusions 
This work presents a novel ML technique to predict wind pressures on full-scale buildings based 
on model-scale wind tunnel experiments. The QS theory-based estimation equation is 
incorporated to generate reliable data points for training the meta-learner of the few-shot 
learning model. Expanding the dataset using the QS theory-based estimation equation can be 
meaningful for this application. When compared to simple linear or quadratic interpolation, the 
QS theory-based estimation equation provides a more reasonable way to generate convincing 
wind pressure coefficients. Also, a baseline few-shot learning model is employed for 
comparison. With just 3% of the TTU data included in the two-stage training procedure, the 
baseline model predicts the mean wind pressure coefficients with an MSE equal to 0.057 and 
R2 value equal to 0.685. With the help of the QS theory-based estimation equation, the proposed 
model shows a better prediction performance with an MSE equal to 0.047 and R2 value equal 
to 0.740 (increases of 17.5% and 8%, respectively). Even though this improvement is small, it 
is still meaningful. Because it can reduce the reliance on physical tests by generating data points 
with reasonable wind pressure coefficients. Furthermore, the QS theory-based estimation 
equation is easily integrated with other methods that improve predictions in ways other than 
expanding the dataset (e.g., improving the performance via optimizing the model architectures). 
In conclusion, although the scaling issue causes a mismatch in wind pressure of full-scale and 
scaled model buildings in some cases, the proposed model yields satisfying performance with 
only 3% of TTU data involves in training. 

 
However, there are still limitations that should be addressed in future work. First, the 
predictions for the extreme value cases are not great. One potential solution could be integrating 
additional physics-based information into the few-shot learning model. Specifically, in the 
proposed model, the data sample size for extreme values cases is still not sufficiently large for 
the meta-learner to deduce the difference in the behavior of the wind at the center from that of 



9 
 

the corners of the roof. Therefore, the physical knowledge from design codes and standards 
could be helpful in clustering the whole roof area into several small areas. Then, implementing 
the proposed few-shot learning model for each small roof area might show a better prediction. 
Second, the WOW and TTU datasets used in this work have the same building geometry, 
therefore the trained few-shot learning model can only reliably be used to extrapolate the wind 
pressure from the scaled model to the full-scale building which has the same geometry as the 
WOW dataset. When comparing the real-world gable or hip roof building, this building 
geometry might be too simple. To make this few-shot learning model have a broader impact as 
an application, multiple model-scale datasets with different building geometries can be used in 
the training set at the first training stage as a future improvement. 
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