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Abstract: Road inspections are mostly carried out manually, limiting their scalability and creating 

subjective human errors. Research into automating them was studied, though there are still gaps in 

how to efficiently replace various aspects of manual inspections, such as how to improve detection 

accuracy and how to integrate them into a defect progression tracking pipeline.  Tackling these gaps 

would enable a digitalised solution for detecting and registering road defects, such as a road digital 

twin. This paper aims at closing these gaps by providing two unique contributions: Firstly, 

performing an analysis of the performances of defect detection using different data modalities (RGB 

images and point cloud data) under different conditions to outline the strengths and weaknesses of 

each modality. Secondly, to create a pipeline for using past defect information to guide detection 

through detecting within bounding boxes of known defects and to enable continuous tracking of 

defect conditions compatible with the IFC format. Mask RCNN was used for detection in the 

experiments. Results indicate that incorporating information from different modalities can indeed 

lead to more consistent and accurate detections, and past defect information can enhance detection 

accuracy in the case of previously known instances of defects.  

Keywords: Road Digital Twins, Condition Information, Enriching and Maintaining, IFC, Mask 

RCNN, Depth Map 

1. Introduction 

The UK’s strategic road network carries a third of all traffic and two-thirds of all freight 

(National Highways, 2022). It is vital to the UK’s economy, and its effective maintenance is 

crucial to the nation both economically and socially. The UK spent £4.88 billion on road 

maintenance between 2018 and 2019, though road conditions still left a lot to be desired. 36% 

of B and C roads in the UK were classified in red and amber states, indicating bad road quality. 

424 accidents in 2020 were caused by defective road surfaces. Over 1 million tons of excessive 

CO2 was emitted on Virginia interstate highways over a 7-year period due to defective road 

surfaces (Louhghalam et al., 2017). Additionally, £329,379 of compensation was paid to 

claimants who have made vehicle damage report claims due to potholes and road defects in 

2018/19 by Highways England (Highways England, 2018). The monetary, safety and 

environmental costs of suboptimal road conditions are significant, and current road inspection 

practices are not capable of solving this problem. The current state of practice, i.e., the current 

ways to address the problem, and their potential drawbacks, are investigated. 

Currently, most road inspections are done manually, but there exist some automatic road 

inspection methods. For example, TRACS (TRAc-speed Condition Surveys) and SCANNER 

(Surface Condition Assessment for the National Network of Roads) surveys are two of the main 

automated visual methods currently used for inspecting road surface conditions (Department 

for Transport, 2021a). However, there are significant problems associated with these methods. 

First, they can only detect the deformation of road surfaces. Second, these methods can only 

give a Road Condition Indicator (RCI) for each 10m or 100m subsection length of the road and 

identify sections of the road that are in need of further investigations, so further manual 

inspections are still required to locate, categorise and measure the specific defects. Third, these 

automated methods are only used on classified roads at a very low frequency, as these dedicated 
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data collection vehicles are expensive, and only a limited amount of these vehicles are available 

across the country.  

Local authorities managed unclassified roads forms the majority (60%) of the road network in 

England (Department for Transport, 2021). There are also some other commercial solutions 

available for inspections of unclassified roads, such as RoadBotics, Vaisala, and Gaist. And 

some of the local authorities are using these solutions (Department of Transport, 2021). 

However, they all have their own problems. For example, similar to the TRACS and 

SCANNER surveys, RoadBotics and Vaisala only produce a rating for each subsection of the 

road, and further manual inspections are still required. Gaist (Gaist, 2022) identifies and records 

some common types of road defects automatically, but it only focuses on the road surfaces and 

does not inspect other road assets, such as signs and road markings. In addition, all of the 

methods mentioned above only use 2D visual data. None of these methods makes use of 3D 

depth data of the road pavement. 

As a result, most road inspections remain manual. Subjective interpretations and decisions are 

involved, and results from different inspections cannot be easily compared (Bianchini et al., 

2010), leading to inconsistent conclusions. Inspection frequency is also low as some roads are 

only being inspected at a frequency that is up to every 12 months (Turner et al., 2020). The root 

cause of this problem is that the perceived value of increasing its frequency is too low to justify 

the costs. 

These problems motivated the search for a digitalised approach to defect detection and 

registration, with the aim of increasing the value of inspection through more accurate detection 

and better integration with defect information storage standards, while at the same time enabling 

a more scalable approach that can make more frequent inspections possible.  

2. Research Background  

Currently, two main types of methods used for road defects detection are image processing 

based methods and machine learning based methods (Cao et al, 2020). Image processing 

methods mainly include 1) threshold segmentation methods, which simply threshold the 

intensities of the pixels  (Zhu et al, 2007); 2) edge detection methods, which perform gradient 

calculations to identify edges in the images (Zhao et al, 2010); 3) region growing methods, 

which select seeds in the image and find similar adjacent pixels around the seeds to identify 

regions of defects (Zhou, et al, 2016). These methods are relatively easy to implement, but 

generally do not give very good results and cannot categorise the defects detected. Instead, only 

regions of defects can be identified, which is not suited for our application; Machine learning 

based methods include unsupervised learning methods and supervised learning methods. 

Unsupervised learning methods (Li et al, 2019) can potentially remove human subjective 

factors from the results, but these methods are unable to classify the defects detected, rendering 

them unsuitable for this application as well. Supervised learning methods include 1) 

classification based methods, which divide the input into overlapping blocks, and then classify 

the block images into either binary or multiple classes (Li et al, 2020). These methods can 

automatically classify the block images, but lack the level of accuracy that would enable 

measurements of the defects; 2) pixel segmentation methods, which assign a label or a score to 

each pixel in the image (König et al, 2019). However, these methods are not capable of grouping 

the pixels into instances, so different objects of the same type are not distinguished; 3) object 

detection methods, which locate an object in the image and assign its object type. Different 

types of output can be produced by these methods, including bounding boxes and instance 

masks. The instance mask outputs are more useful since it enables the extraction of accurate 

measurements from the output. One of the most commonly used and best-performing 



3 

 

algorithms which output instance masks is Mask R-CNN (He et al, 2017), and it will be used 

for 2D instance segmentation. 

A newer area of research is using 3D information to detect defects. Multiple RGB cameras can 

be used to recover 3D views through, for example, stereo vision (Zhang et al, 2014) or multi-

frame fusion (Dhiman and Klette, 2020). Alternatively, LIDAR scanners can capture depth 

information directly, and point cloud data generated can be used as inputs instead (Li et al., 

2020). Even though the resolutions of RGB cameras are higher than LIDAR data, using the 

former to generate a 3D model has multiple practical constraints. The main problem is that it 

takes a lot of computational power, as point correspondences need to be established. Moreover, 

their performance is subject to lighting conditions. These factors limit their usefulness and 

practicality in the real world. Hence, RGB cameras are unsuitable for 3D geometry generation 

for the purposes of this project. This leaves only LIDAR scanners to be considered. Libraries 

such as the Point Cloud Library (Ruse and Cousins, 2011) and Open3D (Zhou et al, 2018) 

provide numerous ways of manipulating and processing point clouds, in preparation for model 

training. PointNet is a type of neural network that is designed to work directly on point clouds, 

and does not require rasterisation into regular 3D voxels (Qi et al, 2017). However, limitations 

do exist for LIDAR data as well. Their relatively low resolution means that smaller defects, like 

cracks, can be missed. Furthermore, they do not recover data on colors, which usually contains 

valuable information about the defects. To add to this, detection in 3D is not well-studied for 

defects. There are no public datasets of defects available in 3D, which makes training and 

benchmarking models difficult. 

There are still gaps to be solved in order to automate road defect identification and tracking. 

Firstly, we have yet to understand the strengths and weaknesses of each data modality. In 

particular, it would be useful to understand the condition in which one modality would be more 

suitable than the other. Secondly, no research has been done in keeping track of the evolution 

of road defects in the context of a road digital twin. This task is critical in constructing a digital 

twin of the road as past defect information needs to be updated periodically to ensure the 

information remains relevant and accurate. To achieve this, a systematic system of registration 

and storage of defect data in a universal format is required. 

This research aims to enable more informed decisions about how multi-modal data can improve 

the detection of road defects by comparing how each modality performs in different scenarios, 

and to enable past defect information to be used to help with updating current defect information 

and tracking defect development over time. 

3. Proposed Solution 

Based on the research objectives, the methodology was proposed and the process is shown in 

Figure 1. Considering the need for data collection, it was decided that the defects that this 

project will focus on are cracks, alligator cracks, and potholes, as they are commonly found in 

the area where data collection would take place. Cracks, alligator cracks, and potholes can all 

be detected in 2D RGB images, but only potholes can be detected in 3D depth images.  

The two main inputs are collected road data and an existing road digital twin. The road data 

consists of both RGB and LIDAR data, with the LIDAR data undergoing further processing to 

output a depth map so that they can be transformed into 2D depth images. This was motivated 

by the reduced file storage required by 2D images and the ease of applying well-studied 2D 

imagery-based machine learning methods as opposed to 3D-based ones.  The process then starts 

with analyzing whether a specific location of the road has a previously registered defect in the 

input digital twin. If it does, then it will be forwarded to the bounding box detector to gather 

precise information about the evolution of the defect. If it does not, then segmentation will be 
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performed to determine if a new defect is present. Both streams are mostly similar, with the 

processes both involving segmentation of the image into clusters of defects and measurement 

of the clusters to determine their severity and geometry. The two main differences are: (1) in 

the case of a previously identified defect, the registered bounding box would be the area where 

segmentation takes place, as opposed to a larger, more general area. This is to increase the 

quality of the detection due to the prior knowledge that there is a high chance that a defect is 

present in that location. (2) The registration process of the case of a previously identified defect 

involves a comparison of the new state with the registered state, whereas the case of no previous 

registration requires a new registration with the digital twin. 

 

Figure 1:  The proposed solution  

 

Figure 2: The IFC File Structure and the Generation of Bounding Boxes 

Figure 2 shows how the system stores tracked records of development of example defects. Each 

time for a new scan, either a new node will be added onto the recording chain, or an end node 

will be added to the recording chain if the defect is not detected in the new scan. To store the 

record chains in an IFC schema, each of the tracked records of defect development is stored as 

a "Property Set" of the "Road Pavement" object, with each of the "nodes" stored as a "Property 

Value" of a "Property Set", as shown in Figure 2. For each new scan, the square bounding boxes 

for defects from the previous scan are generated first (shown as the red dashed box in Figure 2 

below), and new square bounding boxes (shown as the green box in Figure 2 below) are then 
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generated around the old bounding boxes with a pre-set margin, as shown in Figure 2. Then, 

image segmentation is performed within each of the new square bounding boxes generated. 

4. Methodology 
4.1 Data Collection 

Data was manually collected due to the unavailability of suitable public datasets. An example 

of a popular public dataset is KITTI 360 (Liao et al., 2022). It has a wide coverage of around 

74km of roads, though the resolution and annotations are limited as it is primarily designed for 

use in self-driving cars, which are only concerned with bigger road assets such as poles and 

other cars, and not road defects such as potholes and cracks. Two sets of data were collected, 

which contained RGB images and LIDAR data respectively. Each set of these data would have 

its associated training and testing data. The RGB images were collected using an iPad Pro, with 

a 12MP, ƒ/1.8 aperture camera. The LIDAR dataset was collected using the FARO scanner.  

Training data for the RGB dataset consisted of 269 top-down images of defects, with each 

image consisting of one or more defects. It is worth noting that the two sets of training data 

covered different segments of roads. Testing data for the RGB and LIDAR datasets cover the 

same road segment in order to ensure the comparability of the results. Two stretches of roads, 

which had a total length of 150m, were used as testing data. One of the two segments was a 

road with a dry surface, whereas the other was wet. This aids in allowing for an investigation 

into how weather can affect detection performances.  

To find a compatible representation of both sets of data, the RGB images would need to be 

stitched together for testing in order to form a single image of the entire road, which allows one 

point in one modality to directly correspond to one point in another. The stitching operation 

was done using an app on the iPad called Polycam, which takes advantage of the iPad’s own 

built-in LIDAR sensor to convert a video feed of a slow-moving motion along the road to a 

textured 3D object, with the RGB image of the road overlayed as the texture. A top-down image 

of the 3D object is then extracted using Blender, which allows a singular top-down image of 

the road to be extracted using a virtual camera, with factors such as the inclination of the road 

being taken into account. The LIDAR dataset consisted of multiple scans of the road at different 

locations, and the registration of these scans was done automatically using Autodesk Recap.  

4.2 Data Processing  

To enhance the quality and usability of the collected data, multiple operations were performed 

for the two sets of data. The RGB testing data collected from Polycam contained blurred spots, 

therefore requiring certain areas to be rescanned. Different scans were stitched together 

manually using Photoshop. The LIDAR data was significantly processed so that they can have 

a 2D representation that retains 3D information. This involved mapping a quadratic surface to 

the road surface using CloudCompare, then projecting points on the road to the surface, and 

outputting an image of the height of each point above it. This resulted in a depth map, with the 

colour informing whether a point is above or below the road, where points below the surface 

indicating a possible pothole. 

4.3 Data Annotation 

Once the data was processed, they were annotated using CVAT. The RGB dataset contained 3 

labels: Pothole, Crack, and Alligator Crack. The LIDAR dataset was only labelled for potholes, 

as that was the only type of defect visible. The annotations were exported to the COCO format. 

A point worth mentioning is that instances of "training" above referred to a dataset that contains 

images used to train the model, which includes the actual training dataset used for gradient 

descent, and a validation dataset used to ensure generality by preventing overfitting. 
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4.4 Evaluation  

Metrics were needed to be able to evaluate and benchmark the performance of the models. The 

evaluators used by the COCO dataset were used in this project (COCO dataset, 2021). They 

were built on top of other key machine-learning concepts and metrics. The most important 

metrics for object detection are precision (1) and recall (2). 

                               𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
                                                              (1) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝+𝑓𝑛
                                                              (2) 

where tp, fp, fn are true positives, false positives, and false negatives respectively. Precision is 

the proportion of correct predictions in terms of all positive classifications, while recall is the 

proportion of correct predictions over all labels of that class. Using these definitions, a 

precision-recall (p-r) curve can be plotted. A key characteristic of this curve is that it should be 

curving outwards, with higher recalls being associated with lower precisions and vice versa. 

The intuition behind this is that a model with high recall tends to be more generous at classifying 

objects as positives, which will increase the proportionality of false positives, reducing the 

precision. A new metric can be computed from this using the area under the p-r curve, called 

the Average Precision (AP). 

Another metric specific to object detection is called Intersection over union (IoU). It gives a 

measure of how aligned the predictions and annotations are. A tp is classified when the IoU 

reaches a certain threshold, and each threshold would produce a unique precision-recall curve 

with a unique AP value. In most cases, an IoU > 0.5 is considered to be a true positive. However, 

this introduces a bias as this system would not distinguish between very accurate predictions 

with higher IoUs, and less accurate ones with lower values. This would not take into account 

how closely the prediction and annotation match, even though this metric is already computed. 

The COCO standards solve this problem by computing the mean of the AP calculated over a 

range of IoUs, as shown in equation (3): 

 𝐴𝑃𝐶𝑂𝐶𝑂 =
𝐴𝑃0.50+𝐴𝑃0.55+⋯+𝐴𝑃0.95

10
                                               (3) 

Each of these APs was computed for a single class. To evaluate the performance of the entire 

model, the mean average precision (mAP) can be computed by finding the means of the APs of 

each of the classes. AR is defined in a similar way as equation (4): 

𝐴𝑅𝐶𝑂𝐶𝑂 =
𝐴𝑅0.50+𝐴𝑅0.55+⋯+𝐴𝑅0.95

10
                                               (4) 

COCO also includes AP and AR evaluations for two different tasks: bounding box detection 

and segmentation mask. The former refers to detecting a rectangle bounding the edges of an 

object, while the latter refers to detecting the actual outline of an object. Bounding box 

detections are usually easier since it is a more "loose" method.  

During training, a special loss function, total_loss, was used to measure performance. It is the 

average of various loss metrics defined in (He et al, 2017), which covers areas specific to this 

architecture, such as the Region Proposal Network and ROI head. The precise definition of this 

metric will not be discussed in this paper for simplicity. 

4.5 Model 

A model was set up to implement Mask RCNN, detailed below. 

Model Configuration: Firstly, the model needed to be configured so that its performance can 

be tailored to this project. An open-source object detection package developed by Facebook 
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Research called Detectron2 was used to implement Mask RCNN. The default configuration 

included in the Detectron2 tutorial, was used in this project, which also initialised the weights. 

The details of this configuration can be found at GitHub COCO. The learning rate was set to 

0.00025, with a batch size of 2. 

Training: Training data was divided into an actual training set and a validation set. The training 

set is the set of inputs used to perform gradient descent in order to adjust the model weights and 

constitutes the target for the model. The validation set is held out in weight training, though it 

would periodically be used as inputs to test the generality of the model weights. This would be 

done by plotting the validation loss as a function of iterations. The model is considered to have 

overfitted if the validation loss is increasing while the training loss is decreasing. The validation 

loss curve usually follows a U-shape, and the number of training iterations that correspond to 

the trough is considered to be the optimum. Two separate models were trained for RGB images 

and depth maps respectively. The optimal training iteration for RGB images was 1500, while 

for depth maps it was 750.  

4.6 IFC generation 

A condition-enhanced digital twin is created using the 3D scan captured by iPad. The 3D scan 

was first exported as a 3D object and imported into Blender. This 3D object is then used to 

generate an IFC model of the road using the blender. Then the defect information is manually 

added onto the IFC model using ifcOpenShell. 

5. Results and discussion 

Figure 3 illustrates a comparison between the performances of the model on different defect 

types on the two road segments. Road 1 generally has better results than Road 2, which is an 

indication that the wet road conditions in Road 2 made it more difficult for the model to identify 

defects. For instance, cracks would appear thicker due to water seeping deep into the cracks, 

causing areas around the crack to remain wet for longer. The performances of the detection of 

two types of cracks did indeed suffer from a larger penalty in the wet road compared to the dry 

one, relative to the reduction in performance of the detection of potholes. 

Figure 3 (left): Comparison of the performances of the model on different defect types on the two road 

segments; Figure 4 (right): Comparison of the performances between the two sets of data (RGB vs 

Depth) on the two road segments 

Figure 4 shows a comparison between the detection precisions of the two models on the two 

road segments. The two models had similar results in road 1, which was dry. However, the 

performance diverges significantly on road 2, which was wet. The depth model was a lot more 

robust against a change in weather conditions, only suffering from a minor reduction in 

performance. This supports the hypothesis that wet roads make detections less accurate as they 

have different colour intensities, which would affect the RGB model but not the depth model.  
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Figure 5 is an example of the detection results of the same section of the road. RGB models are 

shown at the top, while the depth model is at the bottom. The results demonstrate that there is 

potential for depth maps to be used alongside other existing data in order to improve the 

detection performance on road defects. 

 

Figure 5 example of the detection results of the same section of the road 

5.1 Bounding boxes  

The performance of the model is evaluated using the metrics with and without the bounding 

boxes, and the results are then compared. It can be seen from Figure 6 that the detection results 

are significantly improved by using bounding boxes, especially for the detection of small 

defects. None of the small defects was detected when bounding boxes were not used. This 

improvement in the detection of small defects is predictable since in a normal search, the whole 

image is segmented into smaller sections of the same size, which does not take into account the 

actual size of the defect being detected, whereas in a more targeted detection with the aid of 

bounding boxes, essentially the area of the defect is being focused on and "zoomed into", 

enabling an easier detection by the model. An example of this is given in Figure 7. 

The results also show a big improvement on large defects, which is because that the bounding 

boxes help to "zoom" the defect into a more appropriate scale, resulting in large performance 

improvements in the detection of both small and large defects, and consequently increasing the 

number of True Positives (TP). The detection results are also improved by bounding boxes 

because the search area is much more limited, hence many of the False Positives (FP) outside 

the bounding boxes are directly eliminated. Using the definition of precision in equation 1, as 

the number of True Positives (TP) increases, and the number of False Positives (FP) decreases, 

there is an overall increase in the value of precision. 

It can be seen from Figure 8 that the second set of metrics also indicates a large improvement, 

especially in the detection results of small defects. This is due to similar reasons as explained 

above. In addition, the bounding boxes are expected to give an improvement here since 

normally only one defect is expected per bounding box, hence the density of defects is reduced, 

resulting in easier detections by the model. As the number of TP increases, the number of FN 

decreases since |TP| + |FN| = the total number of samples within the testing dataset. As a result, 

the overall value of recall, as defined in equation 2, increases. 
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Figure 6 (left) Comparison of AP Values across Different Scales for Segmentation; Figure 7 (right) An 

Example of Detection of Small Potholes using Bounding Boxes 

 

Figure 8:  Comparison of AR Values across Different Scales for Segmentation 

6. Conclusions 

This research studied road digital twins with condition information and proposed an innovative 

methodology for enriching and maintaining road digital twins. There are three main 

contributions in this study: 1) Depth-based detections can improve the performance of defect 

detection, in that it allows for more consistent performance under different weather conditions 

that can affect the appearance of the road surface. By incorporating geometrical data about 

defects, it allows for more information about the defect to be factored in when detecting defects. 

2) The bounding box method can improve the performance of defect detection during the 

updating scans. 3) A way to store past defect information within the IFC schema has been 

developed, which allows the history of defect developments to be accessed by the system to 

help with updating defect information in subsequent detections. The proposed solution can 

bring performance improvements in road defects detections by making use of data in multiple 

modalities and historical defects.   

In the future, more training data can be used to train more accurate models. Data had to be 

collected for this project, which limited the amount of training data accessible. By training and 

testing over a larger dataset, more accurate results can be obtained, and the conclusions can be 

better derived. Future work can be done by using more sophisticated data processing pipelines 

to generate road texture. This will allow for the testing image’s resolution to match up better 

with that of the training data, which can improve accuracy. Additionally, we only used the 

positions and sizes of previous defects to help with the updating steps. We could also potentially 

use other properties of previous defects such as their types as additional inputs to the 

convolutional neural network. In order to train such a model, a significantly larger amount of 

training data would need to be collected over a long period of time. Moreover, more pavement 
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defect types could also be added, like rutting, together with defects on other assets, such as 

sidewalks, traffic lights, and traffic signs. 
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