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Abstract. The resilience of critical infrastructure systems (CISs), which provide essential services 

such as energy, water, transportation, and communication, is crucial to the smooth functioning of 

modern societies. However, literature shows that the impact of disasters and recovery efforts of CISs 

are not evenly distributed among communities, leading to disparities in their resilience levels. This 

study uses data from a case study of a middle-sized county in China, which suffered a severe 

earthquake disaster, to measure the resilience disparities across different communities and analyze 

the correlation between socioeconomic and infrastructure resilience variables. The study also 

introduces a model to estimate the vulnerability of different communities served by the same large-

scale CISs. The findings contribute to understanding the hidden influence mechanisms between 

socioeconomic factors and CISs resilience, and are expected to inform the development of advanced 

CISs resilience modeling and enhancement methods from a socio-technical perspective. 

1. Introduction 

Critical infrastructure systems (CISs) are the backbone of modern societies and ensure the 

provision of essential services such as energy, water, transportation, and communication. The 

resilience of CISs has become a major concern for decision-makers and policy makers due to 

the increasing frequency and severity of natural and human-made disasters. The ability of CISs 

to absorb and recover from disruptive events is critical to maintaining the smooth functioning 

of society and avoiding catastrophic consequences (Davis Craig, 2021). 

CISs resilience depends on a multitude of factors, such as management and planning, 

operational procedures, and community preparedness (Magoua and Li, 2023). These factors are 

crucial in strengthening CISs ahead of disasters and in ensuring a speedy recovery process after 

a disruptive event. However, literature reveals that disaster impact and recovery efforts of CISs 

are usually not balanced across different communities, leading to disparities in the level of CISs 

resilience of the communities (Masozera et al., 2007, Emrich et al., 2020). In particular, 

communities with weaker socioeconomic status tend to suffer more infrastructure damages and 

recover slower. These may include communities with lower infrastructure investments, lower 

rates of urbanization and industrialization, and so on. 

Socioeconomic inequity, therefore, has a considerable impact on the resilience of CISs, and 

understanding the hidden influence mechanisms is crucial to improving CISs resilience 

management. Prior studies adopt a holistic perspective when modeling and assessing the 

resilience of CISs that span multiple service areas or communities (Ouyang and Wang, 2015, 

Mottahedi et al., 2021). However, a holistic measure of the CISs resilience does not reflect the 

considerable imbalance of CISs resilience of individual service areas. 

This study introduces a method to quantitatively analyze the relationship between the 

infrastructural resilience and socioeconomic status of communities. It employs data on 

infrastructure resilience and socioeconomic variables from a case study of a middle-sized 

county in China, which experienced a severe earthquake disaster. The research investigates the 

variation in the resilience of infrastructure across different communities and analyzes the 
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association between socioeconomic variables and infrastructure resilience variables. 

Furthermore, it introduces a model that estimates the resilience poverty of different 

communities that rely on the same large-scale CISs. 

The findings and discussion of this study will contribute to informing researchers and 

professionals in the area of CISs resilience management about the hidden influence mechanisms 

existing between socioeconomic factors and CISs resilience. At the same time, this study will 

lay the foundation for developing more advanced CISs resilience modeling and resilience 

enhancement methods from a socio-technical perspective.  

2. Literature Review 

Several studies have highlighted the critical role of socioeconomic factors in shaping the 

vulnerability of communities served by CISs (Cutter et al., 2008, Karakoc et al., 2020, Norris 

et al., 2008). These studies emphasize that socioeconomically disadvantaged communities are 

more vulnerable to disasters and less likely to recover afterward. Socioeconomic vulnerability 

refers to a range of factors that affect an individual or group's ability to anticipate, cope with, 

resist, and recover from the impact of a hazard (St. Cyr, 2005). 

A number of studies take a social approach to model socioeconomic vulnerability, utilizing 

individual and group characteristics to represent the inherent vulnerabilities of specific 

communities. For instance, Cutter et al. (2003) Social Vulnerability Index (SoVI) identifies 

socially vulnerable groups based on ethnicity, race, education, and gender and aggregates 

individual social characteristics to create a final index. Such studies emphasized on the 

importance of addressing the unique needs of vulnerable communities and laid the foundation 

for studies that integrate socioeconomic factors in CISs resilience assessment. For instance, 

Karakoc et al. (2020) proposed a method to determine system component importance based on 

the social vulnerability of the served communities, while Dhakal and Zhang (2023) developed 

a method to measure the resilience of CISs that serve multiple service areas, accounting for 

disparities in disaster impacts.  

While an increasing number of studies attempt to model the role of communities in CISs' 

disaster resilience, few provide a clear understanding of the relationship between community 

socioeconomic status and resilience. This is because the social factors typically examined in 

these studies, such as race, gender, and age groups, only partially explain the interactions 

between communities and CISs. Therefore, there is a need to identify a more comprehensive 

set of socioeconomic factors that can better explain CISs resilience disparities across different 

communities. For instance, factors such as employment rates, percentage of the population 

involved in various industry sectors, and per capita income can provide a better understanding 

of how infrastructure services are utilized in specific service areas. By gaining a deeper insight 

into the complex relationship between communities and infrastructure systems, more effective 

pre-disruption preparedness plans and post-disruption restoration schedules can be developed 

to achieve equitable CISs' resilience across different communities. 

3. Proposed Methodology 

To quantitatively analyze the relationship between socioeconomic factors and the resilience of 

Critical Infrastructure Systems (CISs), this study will follow a series of steps. First, the study 

will identify a set of socioeconomic variables that characterize the level and quality of 

interactions between communities and CISs in the context of Chinese societies. Then, the study 
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will identify a set of variables that characterize the resilience of CISs within different 

communities. Subsequently, the infrastructure resilience variables will be utilized to verify and 

measure the disparities in CISs resilience among different service areas. Following this, a 

correlation analysis will be conducted to analyze the relationship between the socioeconomic 

variables and infrastructure resilience variables. Finally, the study will propose a model to 

measure the vulnerability of CISs within each community based on the identified 

socioeconomic variables. The details of each of these steps are provided below. It is important 

to mention that in the proposed methodology communities refer to the various towns or 

geographical areas served by the same large-scale CISs. 

3.1 Socioeconomic Data 

Unlike previous studies that focus on analyzing the social profiles of individuals within 

communities, such as their ethnicity, occupation, and age groups, this study aims to analyze the 

socioeconomic factors that determine the interaction between communities and CISs. To 

achieve this, a set of eight socioeconomic variables were selected based on three criteria: they 

characterize the level and type of interaction that communities have with CISs, they are 

consistent with the context of Chinese societies, and the data is publicly available with sufficient 

granularity. These variables are listed and briefly explained in Table 1. 

Table 1:   List of Socioeconomic Variables and their Explanations. 

Variable Name Explanation 

S1 
Percentage population living in 

urban area 

Reflects the level of occupancy of the urban area in a 

service area and the use of urban infrastructure services. 

S2 
Percentage population working in 

secondary and tertiary sectors 

Provides insight into the industrial focus of a service area 

and the main use cases of infrastructure services. 

S3 
Percentage unemployed 

population 

Provides insight into the level of infrastructure services 

usage by individuals and families 

S4 Urbanization level 
Reflects the level of development of urban infrastructure 

services. 

S5 Gross domestic product 
Reflects the economic potential of communities and their 

ability to support infrastructure investments. 

S6 Number of industrial enterprises 
Provides insight into the level of infrastructure services 

usage by enterprises. 

S7 Number of township committees 
Reflects the ability of communities to organize themselves 

and influence major infrastructure investment decisions. 

S8 Per capita income 
Provides insight into the level of infrastructure services 

usage by individuals and families. 

Data for each community can be collected from the statistical yearbooks published by the local 

government, which provide high-quality, reliable, and granular data. To identify and address 

any multicollinearity issues between the socioeconomic variables, the study will calculate the 

Variance Inflation Factor (VIF) for each variable. A strict VIF range from 1 to 4 indicates no 

significant issue of multicollinearity, while a moderate range from 1 to 10 can be adopted in 

studies with limited data. If the VIF values exceed the upper limits, the most common solution 

is to eliminate the variable causing the multicollinearity issue from the dataset (Chan et al., 

2022). 
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3.2 Infrastructure Resilience Data 

Infrastructure resilience refers to the ability of infrastructure systems to withstand and recover 

from natural disasters or other disruptions. It can be measured by several characteristics such 

as robustness, rapidity, resourcefulness, and redundancy (Bruneau and Reinhorn, 2006). These 

characteristics can be further represented by specific dimensions, such as functional loss, 

recovery time, economic resources, and alternate plans. In previous studies, functional loss, 

recovery time and recovery cost are the most used variables to represent the resilience of CISs. 

As such, in this study, functional loss, recovery time, and reconstruction cost of infrastructure 

were selected as three indicators of infrastructure resilience. Functional loss refers to the loss 

of infrastructure services due to disaster damage, while recovery time and reconstruction cost 

refer to the time and resources required to restore the infrastructure to its pre-disaster state. 

Table 2:   List of Infrastructure Resilience Variables and their Explanations. 

Variable Name Explanation 

R1 
Percentage of infrastructure 

service outage 

Loss of infrastructure services to a specific community due 

to disaster damage. 

R2 
Recovery time of infrastructure 

service 

Time required for the infrastructure services to be recovered 

to its full functional level in a specific community. 

R3 
Recovery and reconstruction costs 

of infrastructures 

Amount invested in repairing and rehabilitating the 

infrastructures serving a specific community. 

Data for each indicator can be collected from various public or private sources, including utility 

companies, urban development planning departments, and disaster risk management 

departments. In cases where data is limited, for example, if data about the damaged 

infrastructure system components is known but the resultant functionality loss in each 

community is unknown, simulation models based on High Level Architecture (HLA) co-

simulation of physics-based infrastructure models can be used to estimate missing data 

(Magoua et al., 2022). The layout of the simulation model is presented in Figure 1 below, 

consisting of multiple CIS federates and a runtime infrastructure (RTI) middleware. CIS 

federates simulate the states and flow of services within CISs based on domain-specific 

knowledge, while the RTI manages data exchange, synchronization, and coordination services 

during federation execution (IEEE, 2010). Using this model, functional loss and recovery time 

of CISs can be reasonably estimated while considering the interdependencies between systems. 

For further technical details refer to (Magoua et al., 2022, Yang et al., 2023). 
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Figure 1:   HLA Federation Architecture for Modeling CISs 

3.3 Measuring Resilience Inequality 

In an ideal society, all communities would be affected equally by disasters and would recover 

in similar timeframes if they face the same level of threat. However, in reality, communities are 
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impacted differently, even under the same threat level. This unequal distribution of 

infrastructure loss and recovery time is similar to the welfare inequality in society. To measure 

this inequality, the Gini coefficient, which is commonly used to measure social welfare 

inequality, can be used (Atkinson and Brandolini, 2010). In this study, the Gini coefficient is 

used to measure the unequal distribution of functional loss, recovery time, and reconstruction 

costs among different communities. The coefficient ranges from 0 to 1, with 0 indicating 

complete equality and 1 indicating complete inequality in disaster resilience.  

3.4 Correlation Analysis 

To investigate the relationship between the socioeconomic status of communities and 

infrastructure resilience, a correlation analysis was conducted. The Pearson's product-moment 

correlation coefficient was used to examine the relationship between two continuous variables. 

The strength of a linear association between two variables was measured by Pearson's 

correlation, and the results were interpreted based on both the correlation coefficients and the 

p-value. The magnitude of the correlation coefficient determines the strength of the association, 

with a high, medium, or small association based on the absolute value of the correlation 

coefficient. When conducting hypothesis tests, commonly used significance levels for p-values 

are 0.1, 0.05, or 0.01. To account for small sample size, this study selects a p-value significance 

level of 0.1. 

3.5 Measuring CISs Resilience Poverty 

This study uses the term "resilience poverty" to describe the likelihood of a community having 

lower infrastructure resilience compared to neighboring communities. To calculate the 

resilience poverty of a community's infrastructure, the proposed method adapts the Social 

Vulnerability Index (SoVI) developed by Cutter et al. (2003). The approach identifies the 

socioeconomic factors that affect infrastructure resilience and formulates them into a final 

aggregated index, which describes the cumulative effect of individual socioeconomic 

characteristics. 

Using the set of socioeconomic variables presented in Table 1 above, the resilience poverty 

(Res_P) can be formulated as follows: 

𝑅𝑒𝑠_𝑃 = 1 − 𝛿 (1) 

𝛿 = ∑ 𝑍𝑆𝑖 
(2) 

Here, δ is an additive model that generates a composite infrastructure resilience score for each 

community. An additive model with equal weights for all variables is selected to avoid any a 

priori assumption of the importance of each factor in the overall sum. 𝑍𝑆𝑖 represents the Z-

score calculation of socioeconomic variable 𝑆𝑖 . Z-scores, also known as standard scores, 

provide a statistical method for normalizing different variables onto a similar numeric scale. A 

Z-score is calculated as follows: 

𝑍𝑠𝑐𝑜𝑟𝑒 = (𝑞 − 𝜇)/𝜎 (3) 

where q is the normalized value of a variable in a given community, μ is the mean for that same 

variable across all communities, and σ is the standard deviation of that same variable across all 

communities. 
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4. Case Study 

This section presents a case study of Mianzhu County's interdependent power and water 

systems. Mianzhu is a county in China's Sichuan Province, covering an area of 1,245 square 

kilometers and inhabited by around 500,000 people in 21 towns. In 2008, the county was struck 

by a devastating 8.0 magnitude earthquake, known as the "5-12" Wenchuan Earthquake, which 

caused significant damage to Mianzhu's infrastructure systems. The power and water 

distribution systems were particularly affected, with 11 major power substations, 14 water 

pumping stations, and 341 kilometers of water supply pipes destroyed, leading to extensive 

economic and humanitarian impacts. The direct economic losses to the power and water utilities 

were estimated to be over 3.4 billion yuan (approximately 480 million USD) (MLG, 2020). 

Table 3 summarizes the socioeconomic data of the 21 towns of Mianzhu County. 

Table 3:   Summary of the socioeconomic data of the 21 towns of Mianzhu County. 

Towns 

Socioeconomic variables 

S1 (%) S2 (%) S3 (%) S4 (%) S5 (￥) S6 S7 S8 (￥) 

Jiannan 100.00 67.68 32.32 100.00 1,539,880,024 7 3 12,500 

Dongbei 17.08 54.39 34.22 21.00 430,396,488 64 9 8,430 

Xinan 57.81 29.29 58.29 33.32 360,005,136 19 6 5,250 

Xinglong 4.80 30.75 41.22 5.29 383,745,716 13 5 4,500 

Jiulong 8.39 35.32 38.33 3.78 235,766,316 15 4 3,850 

Zundao 9.20 34.12 40.96 21.59 413,597,100 15 10 7,840 

Hanwang 47.05 52.50 34.10 45.51 689,264,624 41 11 8,125 

Gongxing 30.10 31.98 40.92 16.03 378,401,424 15 6 4,795 

Tumen 8.01 46.34 32.74 39.72 516,863,300 27 9 4,500 

Guangji 7.93 29.19 36.49 4.30 456,159,808 20 6 5,284 

Jinhua 17.55 31.30 52.10 9.84 121,428,276 8 7 6,884 

Yuquan 7.43 39.53 28.16 4.71 385,278,740 15 7 4,753 

Banqiao 13.67 29.44 34.33 17.86 343,929,676 18 7 4,567 

Xinshi 30.03 24.92 31.59 30.00 736,767,076 37 13 9,680 

Lide 32.46 36.59 35.80 16.28 982,114,792 58 16 5,610 

Fuxin 7.31 32.21 38.53 22.80 718,477,248 52 11 4,450 

Qitian 7.08 23.73 30.89 10.21 308,073,948 10 5 4,723 

Shendi 6.17 42.64 28.14 20.20 477,025,968 26 7 3,900 

Mianyuan 5.24 25.34 56.93 4.08 308,542,372 10 4 4,743 

Qingping 46.79 36.49 41.66 4.92 117,404,088 6 5 4,430 

Tianchi 3.52 50.85 39.36 4.47 60,426,696 22 5 3,973 

Data about the damages suffered by Mianzhu’s power and water systems following the "5-12" 

Wenchuan Earthquake were collected from the county's power and water utility companies. 

Information about the post-disaster reconstruction plans and cost was also collected. Missing 

data about power/water outage levels and restoration time in the towns were estimated using 

HLA-based co-simulation. A pressure-driven hydraulic model was used to analyze the water 
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system, which was simulated using the EPANET software. On the other hand, a power flow 

analysis model was used to analyze the power system, which was simulated using the OpenDss 

software. Both EPANET and OpenDss are well-tested engineering tools highly adopted among 

professionals and researchers for analyzing water and power supply systems. Table 4 

summarizes the infrastructure resilience data of Mianzhu County's power and water systems 

following the "5-12" Wenchuan Earthquake. 

Table 4:   Summary of the infrastructure resilience data of Mianzhu county’s power and water CISs. 

Towns 

Water System Power System 

R1 (%) R2 (days) R3 (x10000 ￥) R1 (%) R2 (days) R3 (x10000 ￥) 

Jiannan 57.12 7 4,200 

100.00 

13 7,800 

Dongbei 37.12 14 1,084 20 2,200 

Xinan 20.97 28 1,230 3 1,020 

Xinglong 83.02 31 257 20 93 

Jiulong 63.96 49 1,961 105 200 

Zundao 82.36 48 1,026 20 938 

Hanwang 55.58 28 1,048 48 12,000 

Gongxing 0.00 0 0 30 675 

Tumen 0.00 0 0 20 1,350 

Guangji 98.79 35 413 3 257 

Jinhua 100.00 87 300 27 310 

Yuquan 100.00 28 400 3 81 

Banqiao 100.00 28 400 3 100 

Xinshi 100.00 48 1318 10 3,960 

Lide 44.90 35 3740 10 760 

Fuxin 100.00 48 196 27 90 

Qitian 0.00 0 0 35 200 

Shendi 93.92 31 349 35 320 

Mianyuan 89.97 63 162 30 350 

Qingping 98.15 87 952 65 100 

Tianchi 0.00 0 0 105 100 

Analysis of the Gini coefficient for each infrastructure resilience variable in each system (Table 

5) reveals that there were significant inequalities in the resilience levels of the CISs across the 

different towns. For reference, G < 0.2 represents perfect equality, 0.2 – 0.3 represents relative 

equality, 0.3 – 0.4 represents adequate equality, 0.4 – 0.5 represents a big gap, and G > 0.5 

represents a severe gap (Atkinson and Brandolini, 2010). The Gini coefficient for variables R2 

and R3 ranked above 0.4 in both systems, demonstrating major infrastructure resilience gaps 

across Mianzhu's towns. The Gini coefficient of 0.33 for variable R1 in the water system shows 

adequate infrastructure resilience equality across the towns for this variable. The Gini 

coefficient of 0 was obtained for variable R1 in the power system since all the towns 

experienced 100% loss of power supply following the earthquake disaster. The above results 
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may indicate that the robustness of the infrastructures across the county was comparable; 

however, the recovery and reconstruction efforts were not evenly distributed. 

Table 5:   Analysis results of the Gini coefficient for the infrastructure resilience variables. 

 Water System Power System 

 R1 R2 R3 R1 R2 R3 

G 0.33 0.42 0.59 0.00 0.47 0.73 

After testing the socioeconomic variables for multicollinearity issues using VIF, variable S1 

was eliminated from the dataset to solve a moderate issue of multicollinearity that was 

identified. The remaining dataset was used to conduct a correlation analysis with infrastructure 

resilience variables. Considering the p-value significance at 0.1, we observe from Table 6 that 

several investigated relationships showed a significant correlation.  

In the water system, R3 demonstrated a significant and strong correlation with S4 (r = 0.590; p 

= 0.005), S5 (r = 0.750; p = 0.000), and S8 (r = 0.596; p = 0.004), and a medium correlation 

with S2 (r = 0.437; p = 0.048). The variable R2 demonstrated significant and medium 

correlation with S2 (r = -0.400; p = 0.072) and S3 (r = 0.457; p = 0.037). The variable R1 did 

not show any significant correlation with any of the socioeconomic variables. 

In the power system, R3 demonstrated a significant and strong correlation with S2 (r = 0.580; 

p = 0.006), S4 (r = 0.731; p = 0.000), S5 (r = 0.594; p = 0.005), and S8 (r = 0.714; p = 0.000). 

The variable R2 demonstrated a significant and medium correlation with S5 (r = -0.416; p = 

0.060). The correlation with variable R1 was not analyzed in the power system since the entire 

county experienced complete power failure following the earthquake disaster. 

Table 6:   Correlation analysis results between socioeconomic variables and infrastructure 

resilience variables for the water and power systems (Blue: strong correlation; Orange: medium 

correlation). 

 Water System Power System  Water System Power System 

Relationship r  p  r  p  Relationship r  p  r p  

R1 versus S2 -0.267 0.242 - - R2 versus S6 -0.162 0.482 -0.148 0.523 

R1 versus S3 0.010 0.967 - - R2 versus S7 0.070 0.762 -0.324 0.152 

R1 versus S4 -0.170 0.461 - - R2 versus S8 -0.047 0.839 -0.318 0.160 

R1 versus S5 0.022 0.926 - - R3 versus S2 0.437 0.048 0.580 0.006 

R1 versus S6 -0.091 0.696 - - R3 versus S3 -0.135 0.559 -0.232 0.311 

R1 versus S7 0.081 0.728 - - R3 versus S4 0.590 0.005 0.731 0.000 

R1 versus S8 0.078 0.738 - - R3 versus S5 0.750 0.000 0.594 0.005 

R2 versus S2 -0.400 0.072 0.191 0.406 R3 versus S6 0.199 0.388 0.210 0.361 

R2 versus S3 0.457 0.037 0.043 0.855 R3 versus S7 0.217 0.345 0.199 0.388 

R2 versus S4 -0.336 0.136 -0.272 0.234 R3 versus S8 0.596 0.004 0.714 0.000 

R2 versus S5 -0.264 0.247 -0.416 0.060      

Collectively, the results above may imply that R3 has the strongest correlation with 

socioeconomic variables compared to other infrastructure resilience variables. Towns with 

higher urbanization level, GDP and per capita income were likely to be allocated more 
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resources for the recovery and reconstruction of their infrastructures. For R2, results showed a 

negative correlation between levels of urbanization and industrialization and recovery time, 

which could be explained by more complex recovery processes and higher demand for 

infrastructure services in more developed regions. Finally, the study results did not show any 

strong relationship between the socioeconomic variables and the loss of infrastructure services 

in different towns (R1) in this particular case study.  

Lastly, following the correlation analysis presented above, the infrastructure resilience poverty 

of each town in Mianzhu county was calculated. The sign of each variable in the additive model 

δ was determined based on the variable’s coefficient in a linear regression model. The resilience 

poverty scores were rated high (> 0.70), medium (0.30 – 0.70) and low (< 0.30). The results are 

presented in Table 7 below. 

Table 7:   Infrastructure resilience poverty scores of Mianzhu County’s towns. 

Community Res_P Rating Community Res_P Rating 

Jiannan 0.00 Low Yuquan 0.65 Medium 

Dongbei 0.28 Low Banqiao 0.71 High 

Xinan 0.83 High Xinshi 0.32 Low 

Xinglong 0.83 High Lide 0.27 Low 

Jiulong 0.84 High Fuxin 0.47 Medium 

Zundao 0.59 Medium Qitian 0.80 High 

Hanwang 0.23 Low Shendi 0.57 Medium 

Gongxing 0.76 High Mianyuan 1.00 High 

Tumen 0.47 Medium Qingping 0.88 High 

Guangji 0.74 High Tianchi 0.76 High 

Jinhua 0.86 High    

5. Conclusion 

This study has presented a method for quantitatively analyzing the relationship between 

infrastructure resilience and the socioeconomic status of various towns in a middle-sized county 

in China following the "5-12" Wenchuan Earthquake. Our findings indicate significant 

inequalities in the resilience levels of the CISs across different towns, with more developed 

towns more likely to receive more resources for infrastructure recovery. The study highlights 

the need for a more nuanced approach to CISs resilience modeling that considers the varying 

resilience levels of individual service areas. Furthermore, the study provides a foundation for 

developing more advanced resilience enhancement methods from a socio-technical perspective, 

which can help decision-makers and policy-makers better allocate resources and improve the 

overall resilience of CISs. 

Future research should expand the scope of this study by examining other case studies and 

investigating the factors that contribute to disparities in resilience across communities, and 

explore community-based approaches to resilience management. Overall, this study adds to the 

literature on CISs resilience and provides valuable insights for improving resilience in the face 

of disasters. 
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