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Abstract. Heating Ventilation and Air Conditioning (HVAC) systems are responsible for a 

significant portion of building energy consumption, accounting for up to 38% and 12% of global 

energy consumption. Predicting energy consumption for HVAC systems in the early design phases 

is important due to their significant impact on energy use and user comfort. However, it is a 

challenging task due to the complex and dynamic nature of these systems traditionally requiring the 

effort of building simulation. The main aim of this research is to use machine learning (ML) 

techniques to model the components of HVAC systems in buildings and to predict the system’s 

performance. We analyze the HVAC components individually to assess the proposed component-

based machine learning method's ability to predict their performance and explore their 

interdependence. The components are structured in two alternative hierarchies to examine 

alternative modeling approaches: the first hierarchy’s order follows the direction of energy flows 

with the order Z-S-P (zone, secondary HVAC, and primary HVAC components), while the second 

one follows the logic of design and engineering with the order Z-P-S. A random forest regression 

algorithm serves as a component ML model. The R2 value for the CBML model is, respectively, 

0.98, 0.99, and 0.99 in forecasting the zone, primary HVAC, and secondary HVAC components in 

the Z-P-S hierarchy. Hence, the component-based ML method is highly effective in forecasting 

HVAC system components especially, in the Z-P-S hierarchy. Moreover, in forecasting the 

secondary HVAC components, the hierarchy following the design and engineering logic shows a 

significantly higher accuracy for the heat transfer coefficient. The comparison of the prediction 

accuracy of the CBML method in both hierarchies highlights the critical role of design dependencies 

in defining such data-driven prediction hierarchies. The primary HVAC component configuration 

playing a crucial role in modeling secondary HVAC components is a representative example of such 

a situation.  

1. Introduction 

Globally, buildings are responsible for almost one-third of final energy consumption (Nejat et 

al., 2015). Heating, Ventilation, and Air Conditioning (HVAC) systems, which use up a 

significant amount of energy within buildings, account for 40-60% of the total energy usage 

(Solano et al., 2021). Moreover, HVAC systems have a great impact on building energy demand 

and thermal comfort (Afram & Janabi-Sharifi, 2015). The common load forecasting method for 

building energy modeling, not specifically HVAC systems, is using simulation approaches. 

However, on the one hand, the building HVAC systems are influenced by numerous factors in 

the design/operation stage. On the other hand, different degrees of assumptions and 

simplification in the process of building the model is necessary. Hence, numerous 

simplifications and assumptions are required for building energy simulations. These design 

assumptions and simplifications result in significant differences between the forecasting results 

and the actual situation (Qian et al., 2020). 

Machine learning techniques have gained significant importance in energy modeling for HVAC 

systems. This is due to their ability to handle non-linear and complex problems. Moreover, 

these methods are independent of assumptions and simplification. These models have proven 

to be efficient and robust, delivering accurate prediction results in a shorter time frame. As a 

result, they have gained the attention of designers and stakeholders who can benefit from their 

quick and reliable prediction results for making informed decisions (Yu et al., 2022). In this 
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regard, Liu et al. (2019) introduced a combination of Autoencoder and Deep Deterministic 

Policy Gradient (DDPG) algorithm for short-term prediction of HVAC system energy 

consumption. Moreover, an application of Bayesian Network techniques in selecting the most 

energy-efficient Primary HVAC (PHVAC) systems based on critical factors was proposed 

based on a survey (Tian et al., 2019). Furthermore, Woods & Bonnema, (2019) proposed a 

regression model plug-in in EnergyPlus to estimate the impact of newly designed HVAC 

systems on building energy performance. 

The aforementioned studies highlight the potential of machine learning and data-driven 

methods in improving the forecasting accuracy and control of HVAC energy consumption in 

buildings. However, these methods have some limitations such as limited generalizability, 

interpretability, and explainability due to their black-box nature. Generalizability is critical for 

machine learning models since they are often applied in the early design phase of non-existing 

buildings. To improve the generalizability of ML models, a novel approach that combines 

simulation and transfer learning to enhance the accuracy of heating and cooling load forecasting 

was suggested by Qian et al. (2020).  

Additionally, black box models provide limited guidance for the design process, and therefore, 

explainability and interpretability are important to understand how the models work and to 

improve prediction results. Geyer et al. (2021) and Chen et al. (2022) have discussed the 

importance of explainability, interpretability, and generalizability in machine learning models 

applied to the prediction of building energy performance. Moreover, the building HVAC 

systems mostly have been modeled using monolithic black-box models that receive building 

information and forecast the energy demand of HVAC systems. In other words, the sub-

components of HVAC systems have been neglected in modeling HVAC systems. This adds a 

high level of uncertainty and deteriorates the explainability of developed ML models. 

To address the limitations of traditional ML models in HVAC system modeling, we propose a 

component-based machine learning (CBML) model that creates separate models for individual 

HVAC components rather than a single model for the entire system. This approach enhances 

the interpretability and explainability of ML models, allowing designers and engineers to reason 

with the models more effectively. Additionally, unlike monolithic models, CBML models 

enable error traceability as each component has its own ML model with performance metrics. 

While CBML models may experience slight errors due to error propagation, they outperform 

traditional methods when generalization or sparse data is involved (Chen et al., 2023). 

Moreover, breaking down the HVAC system into components reduces complexity, improving 

the transferability of ML models to new cases. Finally, in this study, we developed CBML 

models for two different hierarchies of information flow among the HVAC components to 

evaluate the impact of each component on other components. 

2. Methods 

In this study, a component-based machine learning approach is used to model the HVAC 

systems components. Accordingly, the HVAC system components are divided into three main 

components; zone components, primary components, and secondary components. The primary 

component often referred to as the "plant" converts fuel and electricity to provide heating and 

cooling to a building through secondary systems. The secondary component typically referred 

to as a "system" includes distribution systems between the primary system and the building 

zones as the last component.  

The CBML model in this study includes three levels of data-driven modeling for zone 

component heating demand, secondary HVAC components in each zone, and primary HVAC 
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components for each building. These component models are connected in two hierarchical 

structures. The zone, secondary HVAC, and primary HVAC components are connected in the 

first hierarchy (Z-S-P), respectively. In the second hierarchy (Z-P-S), the zone, secondary 

HVAC, and primary HVAC components are respectively structured.  

2.1 Case Studies and System Boundary 

For the generation of synthetic training data, an automated pipeline has been implemented that 

takes parameter ranges as input and accordingly produces simulation files. After the simulation 

process has finished, a second automated pipeline extracts simulation results and outputs the 

training data. The parameter ranges cover geometric, energy system, and simulation-related 

parameters. 

For the building geometry a generic H-shape office building with eleven rectangular zones on 

the normal floors and three service zones in the basement. For the building HVAC systems, 

three different PHVAC systems were modeled: boiler, central air-source heat pump (ASHP), 

and district hot water (DHW). All systems are assumed to have convective hot water baseboards 

for their secondary HVAC system. The hot water loop temperature was 50°C for ASHP and 

80°C for the boiler and DHW. The piping system was modeled as adiabatic. The heating 

setpoint scales linearly with a typical office hour schedule to a new target heating setpoint. Non-

working hours (starting from 6 pm), only 75% of the setpoint is set, and starting at 6 am 

setpoints are increasing hourly to 85%, 95%, and at 9 am to 100%. No cooling system or 

mechanical ventilation was modeled. The zone ventilation was defined by the air change rate 

per hour.  

2.2 Hierarchy of the proposed method  

The hierarchical structures presented in this paper are demonstrated in Figure 1. The Z-S-P 

structure begins with the zone component, as noticeable in Figure 1-a. In the zone component, 

a machine learning model receives the zone information and forecasts the Annual Heating 

Demand (AHD) and Peak Heating Demand (PHD) for each zone. At the secondary HVAC 

system component, the predicted annual heat demand, the predicted peak heating demand, and 

the zone information are input to the ML model. This level is composed of two ML models for 

forecasting the Maximum Design Flow Rate (MDFR) and coefficient of heat transfer (CHT) of 

the secondary systems, respectively. The U-factor times the area of the building elements is 

considered the coefficient of heat transfer from that element in this paper. The first ML model 

forecasts the maximum design flow rate which later is inserted as an input to the second ML 

model to forecast the coefficient of heat transfer for each secondary HVAC system. Lastly, at 

the PHVAC system component, the sum of the coefficient of the heat transfer value of all 

SHVAC systems, the heating setpoint for each building, and PHVAC system types in each 

building are imported as inputs to the ML model to forecast the design capacity and design 

outlet temperature of the PHVAC system. 

In the Z-P-S hierarchy, as presented in Figure 1-b, the first component modeling is the zone 

component, similar to the Z-S-P hierarchy. The next component in this hierarchy is the primary 

HVAC component. The input variables for these components are the predicted results from the 

zone component models, building orientation, and PHVAC type. In these components, the ML 

model forecasts design capacity and flow rate for the PHVAC components. The predicted 

results of PHVAC components are transferred to SHVAC components. In the SHVAC 

components, the ML model forecasts the design coefficient of heat transfer and design flow rate 

of the secondary HVAC components. 
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a) Z-S-P  

 

b) Z-P-S  

 

Figure 1 - Hierarchical structure of components and information transfer in modeling. 

3. Results 

According to our proposed method, we composed three ML models by coupling them with their 

input and output parameters for forecasting three components of HVAC systems including 

zones, secondary HVAC systems, and primary HVAC systems. We have structured these three 

components in two different hierarchies. We used a random forest regression method to model 

these components. RFR is used to forecast annual heat demand and peak heat demand of each 

zone in a building. Also, this ML method is used to predict the maximum design flow rate and 

the coefficient of heat transfer of the SHVAC systems and the capacity and design flow rate of 

the PHVAC systems. In this paper, we used several performance measures including Root 

Mean Square Error (RMSE), Mean Squared Error (MSE), Mean Average Percentile Error 

(MAPE), and R-Squared, to assess how well the proposed methods perform. These performance 

measures are calculated for each component in both hierarchies and presented in Table 1. 

Table 1:   Performance metrics components in Z-S-P and Z-P-S hierarchies. 

Hierarchy  Z-P-S Z-S-P Z-P-S Z-S-P Z-P-S Z-S-P Z-P-S Z-S-P 

Component Variable               
               UNIT MAE MAE RMSE RMSE MAPE MAPE 𝑹𝟐 𝑹𝟐 

Zone Component 
PHD W 666 666 1368 1368 5.8% 5.8% 0.99 0.99 

AHD GJ 6.36  6.36  11.8 11.8 21% 21% 0.97 0.97 

PHVAC Component Capacity W  25180  18828 35646 24450 1.6% 1.7% 0.99 0.99 

SHVAC Component 
CHT W/K 58.7  219  119.7 562 3.4% 15% 0.99 0.84 

MDFR m3/s 1.15 e-5  12.25  1.97e-5 37.62 0.2% 0.3% 0.99 0.99 

3.1 Zone components 

In this study, firstly, we used RFR models to forecast the annual heat demand and peak heat 

demand of zones. The zone component is similar in both hierarchies as it is the first component 

of both hierarchies. The prediction error plots of the developed models for forecasting annual 

and peak heat demand are demonstrated in Figure 6 and Figure 7. As noticeable in these figures, 

the RFR approach has a high performance in forecasting both annual and peak heat demand. 

Moreover, in Figure 2, the importance of input variables on the forecasting result using the RFR 
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model is depicted. As noticeable in Figure 2-a and Figure 2-b, the most important feature in 

forecasting both annual and peak heating demand is the coefficient of heat transfer of exterior 

walls. The important features in forecasting peak and annual heating demand are respectively, 

the coefficient of heat transfer of windows, and interior walls of each zone.  

 
 

d) Peak heating demand prediction e) Annual heat demand prediction 

Figure 6 – Prediction error plot of peak heat demand prediction 

  

a) Peak heating demand feature importance b) Annual heat demand  

Figure 2 - Feature importance analysis of the input variable in peak heat demand (a) and peak 

annual demand (b). 

3.2 Zone-SHVAC-PHVAC Hierarchy 

In the Z-S-P hierarchy, we first use an RFR approach to forecast the maximum design flow rate 

of the secondary HVAC components using the prediction results of the zone components and 

zone information. As noticeable in Figure 3-a, the prediction accuracy of RFR in the test set is 

significantly high. This shows the high capability of ML models in correlating peak heat 

demand and maximum design flow rate of the secondary HVAC components. In the next step, 

we predict the coefficient of heat transfer value for each secondary component in the zones. 

Figure 3-b demonstrates the prediction error of the RFR model in forecasting the coefficient of 

heat transfer value for the secondary HVAC component.  

In Figure 4, the feature importance analysis of the RFR models in forecasting maximum design 

flow rate and coefficient of heat transfer-SHVAC is demonstrated. As presented in Figure 4-a, 

the prediction of the maximum design flow rate is highly correlated to the peak heat demand 

value of the zones. Moreover, the most important feature in forecasting the coefficient of heat 

transfer values of the secondary HVAC systems, as depicted in Figure 4-b, are maximum design 
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flow rate, coefficient of the heat transfer value of windows, peak heat demand, and annual heat 

demand features, respectively.  

Moreover, the correlation between the coefficient of the heat transfer value of windows and the 

coefficient of the heat transfer value of SHVAC systems shows the great role of the windows 

in heat loss and respectively the need for bigger SHVAC systems with higher U-factors. 

  

a) Prediction error plot of maximum design 

flow rate prediction 

b) Prediction error for the coefficient of heat 

transfer prediction of SHVAC systems 

Figure 3 - Prediction error plot of maximum design flow rate (a) and U-factor time area (b) 

prediction. 

  

a b 

Figure 4 Feature importance analysis of the input variable in maximum design flow rate (a) 

prediction and coefficient of heat transfer-SHVAC (b) prediction. 

In this hierarchy, the design capacity of the PHVAC component as the last component is 

predicted. The input variables are the sum of the coefficient of heat transfer values for all 

SHVAC systems, PHVAC system type, heating temperature setpoint, and the orientation of the 

buildings. In Figure 5, the prediction error and the feature importance of the RFR model in 

forecasting the PHVAC component’s design capacity are illustrated. The RFR model shows 

high performance in forecasting the capacity of the PHVAC systems as demonstrated in Figure 

5-a. As noticeable in this Figure 5-b, the design size maximum flow rate and coefficient of heat 

transfer of SHVAC systems have the highest importance in forecasting Primary HVAC 

capacity, respectively. The building orientation and the heating setpoint temperature are the 

third and fourth important features in forecasting the primary HVAC system’s capacity. 
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a) Prediction error plot of Capacity. b) Feature importance analysis of capacity prediction. 

Figure 5 - Prediction error plot of PHVAC prediction results (a) and Feature importance analysis of 

the input variables in the PHVAC capacity prediction. 

3.3 Zone-PHVAC-SHVAC Hierarchy 

In this hierarchy, the PHVAC component receives information from the zone component and 

accordingly forecasts the design capacity and design size maximum flow rate of the PHVAC 

components. Then, the information from the PHVAC component is used as input for SHVAC 

component forecasting. 

The RFR model forecasts design capacity and design size maximum flow rate using peak 

heating demand, annual heating demand, primary HVAC system type, building orientation, and 

heating setpoint temperature as inputs. Figure 6 depicts the prediction error for both output 

variables of the PHVAC component. In Figure 6-a and Figure 6-b, the high performance of the 

RFR model in forecasting the design capacity and design size maximum flow rate of the 

PHVAC component is demonstrated, respectively. In addition, the feature importance analysis 

of the RFR model for the design capacity and design size flow rate are presented in Figure 7-a 

and Figure 7-b, respectively. As depicted in these figures, the most important variable in 

forecasting both design capacity and design size maximum flow rate for PHVAC components. 

In the Z-P-S hierarchy, the SHVAC components receive predicted results from PHVAC and 

zone components information. Accordingly, the coefficient of heat transfer and design size 

maximum flow rate for SHVAC components are predicted considering peak heating demand, 

annual heating demand, primary HVAC system type, heating setpoint temperature, building 

orientation, PHVAC component design capacity, and PHVAC design size maximum flow rate 

as input variables. The forecasting results show the high performance of the proposed method 

in predicting the coefficient of heat transfer and design size maximum flow rate. In Figure 8-a 

and Figure 8-b, the prediction error plot of the developed ML models for the coefficient of heat 

transfer and design size maximum flow rate of the SHVAC components are presented, 

respectively. The prediction results of both output variables of the SHVAC components show 

significantly high accuracy of the proposed method with an R-Squared value of 0.997 and 

0.994. Moreover, the feature importance analysis of the proposed ML model, presented in 

Figure 9 shows the importance of each input variable on the output variables. As presented in 

Figure 9-a, the peak heating demand, PHVAC system type, and annual heating demand are 

respectively the most important features in forecasting the SHVAC components’ coefficient of 

heat transfer. In addition, Figure 9-b shows the significant influence of the peak heating demand 

in forecasting the design size maximum flow rate of the SHVAC components. 
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a) Design capacity prediction. b) Design size maximum flow rate prediction. 

Figure 6 - Prediction error diagram of design (a) capacity and design size maximum flow rate (b). 

  
a) Design capacity prediction. b) Design size maximum flow rate prediction. 

Figure 7 – Feature importance analysis of design capacity (a), design size maximum flow rate (b). 

  
a) Coefficient of heat transfer b) Design size maximum flow rate 

Figure 8 - Prediction error in forecasting coefficient of heat transfer (a), design size maximum flow 

rate (b) of the SHVAC components. 

  
a) Coefficient of heat transfer b) Design size maximum flow rate 

Figure 9 - Feature importance analysis of the coefficient of heat transfer (a), design size maximum 

flow rate (b) of the SHVAC components. 
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a) R-squared b) Mean absolute percentile error 

Figure 10 – Comparison of the proposed hierarchies in forecasting HVAC components; R2 (a) 

MAPE (b) 

Moreover, the comparison of the MAPE and R-squared metrics for both hierarchies are 

presented in Figure 10-a and Figure 10-b, respectively. As depicted in Figure 10, the CBML 

method has significantly higher accuracy in forecasting the coefficient of heat transfer of 

secondary HVAC components in the Z-P-S hierarchy compared with the Z-S-P hierarchy. 

4. Discussion 

In this subsection, we compare the performance of the proposed CBML model in forecasting 

the HVAC components in both proposed hierarchies. According to the results in Table 1, the 

Z-P-S hierarchy has significantly higher accuracy than the Z-S-P hierarchy, especially in 

predicting secondary HVAC components. The estimated R2 value for the coefficient of heat 

transfer in secondary HVAC components for Z-P-S and Z-S-P hierarchies is 0.99, and 0.84, 

respectively. The main reason for this difference in prediction performance is the influence of 

the primary HVAC system type on the secondary HVAC components. In the Z-S-P hierarchy 

(Figure 3-b), the prediction results of the coefficient of heat transfer have a group of samples 

with a high prediction error. This high prediction error is related to a specific group of SHVAC 

components that have an ASHP as the primary HVAC component. This shows the important 

role of the primary HVAC system type in forecasting secondary HVAC components. As the 

information about the primary HVAC components is not used as input to the secondary HVAC 

components modeling in the Z-S-P hierarchy, the prediction accuracy of the CBML model 

decreases. However, in the Z-P-S hierarchy, this problem has been solved as the primary HVAC 

component’s features are considered in modeling secondary HVAC components. The reason is 

a dynamic dependency of the secondary HVAC system on the primary system. The type of the 

primary system is defined before the specification details of the secondary system are defined. 

Therefore, this calls for not just following the direction of energy flow in defining such hierarchies 

but aligning them with design and engineering logic. In the demonstrated case, the prediction error 

does not have an effect on the capacity prediction and thus the dimensioning of the main system. 

However, it has a significant impact on the prediction of the heat transfer coefficient in the 

secondary system and would cause faulty dimensions if the hierarchy following the energy follows 

would be used. This provides evidence for the need for a careful selection of prediction pipelines in 

such hierarchies. We expect that not only in this case but in general the consideration of the design 

and engineering logic according to domain knowledge excels pure physical logic. 

0.75

0.8

0.85

0.9

0.95

1

Capacity Coefficient of heat transfer MDFR

Z-P-S Hierarchy Z-S-P Hierarchy

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%

Capacity Coefficient of
heat transfer

MDFR

Z-P-S Hierarchy Z-S-P Hierarchy



10 

 

5. Conclusion 

The main objective of this study is to model HVAC system components in buildings using ML 

methods. We apply component-based ML to represent the main components of the HVAC 

system connected by their parameters in a hierarchical way and examined the influence of two 

alternative component structures. According to the prediction results, the component-based 

machine learning method shows high performance in forecasting HVAC system components 

in both hierarchies with only unimportant differences: The R-squared value of the primary 

HVAC components’ capacity prediction is in both cases 0.99, and the MAPE 1.6% respectively 

1.7%. The comparison of prediction accuracy of interim hierarchy levels in both hierarchies 

shows the important impact of primary HVAC components on the secondary HVAC 

components. The predicted coefficient of heat transfer of the secondary HVAC components 

shows a significant difference: The R-squared and MAPE metrics are 15%, and 0.84 in the Z-

S-P hierarchy and 3.4% and 0.99 in the Z-P-S hierarchy. The case of the importance that 

primary HVAC component configuration plays for the secondary HVAC components 

demonstrates the need to follow design and engineering logic instead of pure physical logic. 
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