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Abstract. Given the construction sector’s large environmental impact, analysing and optimising 
sustainability of a structure becomes increasingly important. The growing number of Life-Cycle 
Assessment (LCA) tools for buildings is however neither directly applicable nor transferable to 
bridges. Furthermore, circularity is hardly ever measured, let alone enforced in bridge design. We 
derived and implemented a software tool that enables automated computational evaluation of the 
environmental impact and circularity of bridges. The tool is applied within an innovative 
performance-based design space exploration and multi-objective optimisation framework. A 
Conditional Variational Autoencoder is trained on synthetically generated bridge alternatives to 
enable designers to make informed decisions towards more sustainable and circular yet reliable 
bridge structures. The study proves the framework with integrated LCA and circularity measure 
valuable for the conceptual design phase and simultaneously identifies challenges for its broader 
adoption within bridge design. 
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1. Introduction 

The construction sector has a strong need to shift towards a more sustainable and circular 
industry due to its high contribution to global CO2 emissions and waste production. In addition, 
the predicted scarcity of sand and gravel resources in the near future poses major challenges to 
the construction sector. Next to policy and construction specifications, the design and material 
selection are decisive factors for the environmental impact of the construction sector 
(Bergmeister et al., 2022). Particularly in early design stages, the application of sustainability 
and circularity assessments have the potential to substantially reduce environmental impact, 
raw material consumption and waste production of the construction sector in general. 

Life-Cycle Assessment (LCA) is an established method for evaluating the environmental 
impact of products, offering a life cycle perspective, broad coverage of environmental issues, 
and a quantitative, science-based approach (Hauschild et al., 2018). While LCA has become 
popular in many industries, it is not yet an established metric for bridge construction projects, 
in part due to a lack of computational LCA tools transferable or applicable to bridge structures. 
While some research has explored the use of LCA in bridge structure case studies (Du, 2015, 
Hammervold et al., 2013), most studies use hand calculation tools or general LCA software that 
cannot be used in an automated manner to compare the performance of multiple bridge designs 
efficiently. To achieve reductions in raw material consumption and waste production, a circular 
economy has been proposed (Anastasiades et al., 2020). Combining LCA with a circularity 
assessment is necessary for a satisfactory evaluation of a construction project, as some aspects 
of the circular economy are not adequately considered within LCA and vice versa. While 
individual approaches to circularity assessments for buildings and their link to life cycle 
assessments exist, there are currently no standardised circularity metrics. For bridges only few 
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approaches on development and use of circularity metrics are reported in literature (Coenen et 
al., 2021, Anastasiades et al., 2020) so far. 

Generative design for building structures increasingly incorporates environmental impact 
metrics as a performance objective. In many cases, state-of-the-art simulation software (incl. 
LCA tools) has been combined with genetic algorithms to perform generative design of building 
structures (Caldas, 2008). However, detailed and accurate design evaluation via simulation 
software becomes computationally expensive when applied to complex and high-dimensional 
design problems such as bridge structures. In the last few years, studies have focused on using 
supervised learning algorithms to build efficient and accurate surrogate models for real-time 
design space exploration and optimization (Jiang et al., 2020). However, they all focus on the 
“forward design problem”, i.e. the prediction of the performance values for a specified design. 
Only recently generative models (e.g. autoencoders and generative adversarial networks) have 
been developed and applied to function as an “inverse design” model, allowing for the 
generation of high-performing design alternatives conditioned on a set of performance 
constraints (Salamanca et al., 2023, Danhaive et al., 2021). Balmer and Kuhn et al. (2022) 
developed an AI-augmented bridge design co-pilot, training a variation of a conditional 
variational autoencoder (CVAE) to function both as forward and inverse design models for a 
pedestrian bridge. 

2. Methods 

Based on an investigation of existing sustainability and circularity metrics and their 
applicability to bridge structures (among others Du, 2015, Hammervold et al., 2013), we 
conceptualised and implemented a software tool where LCA (Sec. 2.1) is combined with our 
further development of the bridge circularity index (BCI) (Sec. 2.2) to assess the environmental 
impact together with the circularity of a bridge. This metric can be directly applied in early 
design stages, when the level of flexibility in design is still high and various design options 
have to be explored. The developed tool is integrated into the approach from Balmer and Kuhn 
et al. (2022) (Sec. 2.3), expanding the approach by environmental impact indicators and the 
circularity index as performance attributes. This enhancement enables structural engineers to 
not only make informed decisions towards structurally efficient but also sustainable and circular 
structures. Finally, the developed framework is applied to a concrete frame bridge in the 
conceptual design phase (Sec. 2.4) to investigate its potential, quality and efficiency in a 
realistic setting. 

2.1 Life Cycle Assessment (LCA) 

Life Cycle Assessment (LCA) is a standardised stepwise approach, including four main phases: 
Goal and Scope Definition, Life Cycle Inventory Analysis (LCIA), Life Cycle Impact 
Assessment (LCIA) and Interpretation (ISO14040, 2021). A crucial aspect of the application of 
LCA to compare multiple design alternatives is the use of accurate and comparable LC data, 
which contains the characterisation factors (cf. Eq. 1) of individual materials. Our investigation 
of the widely applied LCI databases KBOB0F

1, Ökobaudat 1F

2 and Ecoinvent 2F

3 has shown that 
construction materials used in bridge construction are not sufficiently included within existing 
LCI databases. Particularly, the databases lack a pertinent distinction of different concrete and 
steel types, which is highly relevant for LCA of both concrete and steel structures: the 
                                                
1 https://www.kbob.admin.ch/kbob/de/home.html 
2 https://www.oekobaudat.de/  
3 https://ecoinvent.org/  
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environmental impact of concrete strongly depends on its composition, particularly the cement 
type and amount, whereas for steel it largely depends on the production method (Hauschild et 
al., 2018). Environmental Product Declarations (EPDs) could help to close this gap as they 
provide comparable data on the life cycle impact of specific construction materials based on 
manufacture information that is assessed by independent auditors based on standardised 
guidelines, following the International Reference Life Cycle Data System (ILCD) method (EN 
15804, 2022). 

Based on a comparative analysis of the different life cycle stages of a bridge, material 
manufacturing has been identified as the most important stage, contributing around 80% to the 
environmental impact (Du et. al., 2018). Furthermore, it has been concluded that the load-
bearing elements are responsible for most emissions in bridge structures (Du, 2015). Within this 
study we therefore define the scope of the LCA calculation as a cradle-to-gate analysis restricted 
to the load-bearing elements. 

To overcome the limitation of existing LCA software and LCI databases we implemented a 
LCA in Python in a structure-agnostic manner. We provide the ability to save EPDs to a local 
database, or use more general data from Ecoinvent e.g. for materials where no EPDs are 
available. Both sources use the ILCD method and are thus comparable. Based on this combined 
database the environmental impact indicators global warming potential (GWP), acidification 
potential (AP), ozone depletion potential (ODP), abiotic depletion potential for fossil (ADPf) 
and non-fossil resources (ADPm), and photochemical ozone creation potential (POCP) are 
calculated:  

𝐿𝐿𝐿𝐿𝐴𝐴indicator = ∑ 𝐶𝐶𝑖𝑖 · 𝑄𝑄𝑖𝑖𝑛𝑛
𝑖𝑖   

𝐶𝐶𝑖𝑖:= Characterization factor for material of element 𝑖𝑖 (ISO14040, 2021) 
𝑄𝑄𝑖𝑖:= Quantity of element 𝑖𝑖 

(1) 

The LCA is implemented in an object-oriented manner, providing the resulting environmental 
impact indicators for the whole structure as well as on the material and element level. The 
implementation allows for automated analysis of a large number of bridge design alternatives 
within the design exploration setting. 

2.2 Circularity Metric for Bridges 
In addition to the environmental impact indicators introduced in Sec. 2.1 our implementation 
further allows for an automated evaluation of a circularity measure for bridge structures. Due 
to the absence of a standardised metric, we chose to adopt and implement basic ideas of the 
bridge circularity index (BCI) according to T. B. J. Coenen et al. (2021) and develop it further: 

𝐵𝐵𝐶𝐶𝐶𝐶 = 𝑊𝑊𝐷𝐷𝐷𝐷 · 𝐷𝐷𝐷𝐷 + 𝑊𝑊𝑅𝑅𝑅𝑅 · 𝑅𝑅𝑅𝑅 + 𝑊𝑊𝐴𝐴 · 𝐴𝐴 + 𝑊𝑊𝑅𝑅𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 · 𝑅𝑅𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 (2) 

The BCI sums up the design input (DI), the resource availability (RA), the adaptability (A) and 
the reusability (RU), adjusted by individually determined project-specific weights. Detailed 
analysis of the sub-indicators reveals a big discrepancy of their level of development. They can 
thus be separated into three categories: (i) measurable, (ii) qualitative, and (iii) not applicable, 
where the latter are discarded. The definition of the measurable sub-indicators (i) of the BCI 
metric is mainly adopted from Coenen et al. (2021), whereby additional material constants are 
defined to describe the recyclability of a material (Ri) and assumptions are made to estimate the 
fraction of recycled, renewable, and reused materials. These assumptions are based on studies 
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where the recycling content, loop potential and end-of-life of several materials has been 
investigated (Hillebrandt et al., 2019). The assessment of the transportability is limited to 
transportation by truck and simplified by considering only the mass of a component as a 
transport criterion. The sub-indicators (ii) which are not measurable in an objective metric are 
assessed by expert opinion in the original BCI approach (Coenen et al., 2021). To allow an 
automated determination of these sub-indicators for this BCI metric, a predefined assessment 
framework for these sub-indicators is developed based on bridge-specific characteristics, 
namely the bridge type, connection type and material. 

2.3 Forward and Inverse Design Meta Model – Conditional Variational Autoencoder 
This study adopts the variant of Conditional Variational Autoencoders (CVAE) suggested by 
Balmer and Kuhn et al. (2023) as a machine learning meta model for design (cf. Fig. 1). The 
CVAE variant allows for simultaneous training of a surrogate model (encoder) and a 
conditional generative model (decoder), making it suitable for solving both, the forward and 
inverse problem. The trained decoder can generate new samples x̂ based on specified 
performance metrics y, while the encoder can compute the mapping from x to an approximate 
performance metric ŷ, enabling examination of the reconstruction error between requested and 
predicted performance metrics. With neural networks being fully differentiable, the CVAE 
leverages Automatic Differentiation (AD) for very efficiently computing derivatives of the 
performance metrics in the output w.r.t. the design variables in the input of the model for a 
subsequent local sensitivity analysis. This local sensitivity analysis allows for more informed 
decisions in multi-objective design situations or uncertainty quantification. 

 

Figure 1: CVAE architecture including its loss function from Balmer and Kuhn et al. (2022). 

2.4 Application Example: Concrete Frame Bridges 
The proposed framework (Sec. 2.1 - 2.3) is exemplified using a simplified concrete frame 
bridge (CFB) in the conceptual design phase. CFBs are common structures used in many 
different settings and construction projects. A schematic plot of the CFB structure with the main 
design features and their ranges is provided in Fig. 2. For structural modelling, some 
assumptions and simplifications were made. In addition to self-weight, a uniformly distributed 
load of 4 kN/m², acting in negative z direction, is applied to the deck slab. The foundations are 
not modelled but are assumed to provide rigidly clamped line supports along both walls. 
For the training of a deep learning algorithm such as the CVAE, a sufficient amount of data is 
necessary. With state-of-the-art software from the architecture, engineering and construction 
(AEC) domain, we built a data generation pipeline for parametric structural modelling, linear 
elastic finite element analysis and cross-sectional analysis including structural utilisation 
according to SIA 262 (2013) (Fig. 3). The constructed pipeline is able to take a design feature 
vector as input, and returns the evaluated structural utilisations, environmental impact 



5 
 

indicators (Sec. 2.1) and circularity indices (Sec. 2.2). Using latin hypercube sampling (LHS) 
we sampled 5,300 design feature vectors, which were then iteratively evaluated with the 
pipeline, forming design space filling synthetic data set of CFB design alternatives. 

 

Figure 2: Schematic of the CFB structure with feature definitions and their sampling ranges. 

 

Figure 3:  Data generation pipeline for the CFB structures. 

One aim of this study is to investigate the environmental impact reduction potential by the 
choice of concrete and reinforcing steel while ensuring structural admissibility in the early 
design stage of CFB structures. One potential way to reduce the environmental impact of 
concrete structures is the use of concrete with clinker-reduced cement, such as CEM II and 
CEM III type cements instead of CEM I (essentially pure clinker). Such clinker-reduced 
cements are already widely used e.g. in Switzerland, and no notable difficulties in the durability 
of concrete structures with such cement types have been reported so far (VDZ Ad-hoc-
Arbeitsgruppe, 2008). Nonetheless, some clients are reluctant in using clinker-reduced cements, 
leading to CEM I being still dominant in many parts of the world. In order to examine the 
further potential of clinker-reduced cement types to the environmental impact for the example 
of CFBs, this study compares the average composition of concrete used in Germany 20163F

4 to 
concrete with CEM III/A (estimated with Ecoinvent) for three different strength classes 
(C30/37, C45/55, C50/60) (Fig. 4a). Additionally, we consider three different reinforcing steel 
                                                
4 InformationsZentrum Beton GmbH, 2023 (https://www.beton.org/betonbau/planungshilfen/umweltproduktdeklarationen)  
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B500B products: European average reinforcing steel (from Ecoinvent database), conventional 
reinforcing steel produced by ArcelorMittal4 F

5, and Stahl Gerlafingen5F

6 (Fig. 4b). The latter shows 
a high reduction of the emissions and resource consumption (except for ODP) due to the 
production of reinforcing steel from scrap and its production with the electric arc furnace route 
(EAF) rather than the primary route (BF-BOF). The EAF method is also used by ArcelorMittal 
for the production of XCarb reinforcing steel5. The GWP for the analysed types of concrete and 
steel is compared in Fig. 4. The concrete and reinforcing steel are varied for the deck slab 
(𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑆𝑆, 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑆𝑆) and the walls (𝑀𝑀𝑀𝑀𝑡𝑡𝐶𝐶𝑊𝑊, 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑊𝑊) individually.  

Figure 4: Characterisation factors of GWP of selected (a) concrete compositions, (b) reinforcing steel 
materials. 

3. Results 
In the following sections, the synthetically generated data set is described and examined, 
followed by evaluation of the performance of the trained CVAE model for the forward and 
inverse predictive quality and capability. Finally, the results of a brief application example of 
the inverse design model to the CFB optimisation is presented. 

3.1 Generated Data Set 
The 5,300 CFB design alternatives sampled for the assumed project situation exhibit the 
targeted space-filling distribution within the defined sampling intervals in the design feature 
space. Fig. 5 shows the value ranges of the computed environmental impact indicators for all 
bridges of the generated data set with a utilisation between 0.9 and 1. While all of these bridge 
structures have very similar max. structural utilisations, they exhibit a large difference in their 
environmental impacts. One dominant factor responsible for this large range is the use of 
different reinforcing steel produced with different manufacturing methods. 
The bridge circularity index (BCI) results also exhibit the expected behaviour, with all CFBs 
having almost the same circularity index. This stems from the structure of the BCI assessment, 
which is mainly dependent on the materialisation and bridge type. As in this study, we compare 
different CFBs, all circularity sub-indicators are identical for the generated alternatives except 
the resource availability (RA), which is proportional to the mass of the bridge structures. The 

                                                
5 ArcelorMittal (2023): https://constructalia.arcelormittal.com/en/tools/epd  
6 Stahl Gerlafingen (2023): https://www.stahl-gerlafingen.com/Energie-und-Umwelt/Umweltproduktedeklaration-EPD  
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BCI metric would thus be more informative for studies which compare different bridge types 
or bridges with different materials. 

 

Figure 5: Environmental impact indicator of generated CFBs (filtered for max. utilisation 0.9 - 1.0). 

3.2 Model 
The generated data set was split into training (70 %), validation (10%) and test (20 %) sets. 
Before being fed to the CVAE, the continuous and ordinal variables were standardised to zero 
mean and unit standard deviation while categorical variables were one-hot-encoded. 
Empirically, 5 multilayer perceptron (MLP) blocks with the widths [512, 256, 128, 64, 32] were 
chosen and set for both the encoder and decoder network. Each block contained a fully-
connected layer with leaky-ReLU activation and batch normalisation followed by a dropout 
layer with dropout probability of 0.1. The latent space was set to be five-dimensional. The loss 
term weights were set to 𝜆𝜆1 = 1, 𝜆𝜆2 = 2, 𝜆𝜆3 = 0.1, 𝜆𝜆4 = 0. For the training, the Adam optimiser 
was applied with an initial learning rate of 0.001, which was reduced by multiplying it with a 
factor of 0.1 in case of no loss improvement over six epochs on the validation set. The training 
of the defined CVAE was stopped after 108 epochs when no further loss improvement could 
be noticed. The resulting performances of the CVAE for forward and inverse predictions 
archived after training are summarised in Fig. 7 and plotted for two quantities in Fig. 6. 

 

Figure 6: Performance on test set: (a) Forward (surrogate) model predicting max. utilisations, (b): 
Inverse (generative) model generating suitable deck slab thicknesses. 
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As a simple demonstration of the capabilities, we used the decoder to generate 7,000 bridge 
instances conditioned on a utilisation range of 0.9 to 1.1 and then used the encoder to evaluate 
the performance of the generated design alternatives. To do so, we sampled performance 
attribute vectors within the selected utilisation range, considering the performance 
interdependencies by applying kernel density estimation on the data set. Fig. 8a confirms that 
all generated designs are correctly generated in the requested utilisation range. While all 7,000 
design alternatives have similar max. utilisation, they exhibit a large range of GWPs, which are 
separated for the six considered concrete types (Fig. 8b). While the designs using an average 
concrete composition (Germany, 2016) exhibit similar mean GWP values for all strength 
classes, the use of CEM III/A shows a clear reduction of the mean GWP. While the constructed 
state-of-the-art structural evaluation pipeline (parametric modelling and FEM analysis within 
Grasshopper using Karamba 3D) took roughly 1.5 h for the evaluation of 1,000 sampled 
structures on a standard laptop, the CVAE only needed 10 sec. for the generation (decoder) and 
re-evaluation (encoder) of the 1,000 conditioned samples.  

Figure 7: Forward (surrogate) and inverse (generative) model performances on test set (R2 for 
continuous (blue) and accuracy for categorical (red) design features and performance attributes. 

 

Figure 8: Properties of the 7,000 bridge instances generated with the trained decoder conditioned for a 
max. utilisation of 0.9-1.1. (a) Density plot of. max. utilisation; (b) GWP values for structures of 

different concrete types of both deck slab and walls (with Ecoinvent rebar). 

4. Discussion 

The cradle-to-gate Life Cycle Assessment LCA has been proven as a suitable metric to be 
implemented into the AI-augmented bridge design framework. Next, to the material 
manufacturing stage, the LCA implementation could be further expanded to consider other life 
cycle phases (cradle-to-grave), such as the construction process (e.g. transportation) and the use 
stage (e.g. replacements). However, especially in an early design stage a lot of uncertainties are 
present regarding the actual impact of later life cycle phases and with cradle-to-gate already 
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around 80% of the environmental impact of a standard CFB is considered (G. Du et. al., 2018); 
note that this can vary for other structure types. The large difference in the Life Cycle Inventory 
(LCI) data of the considered steel options (Fig. 4) logically leads to a non-neglectable difference 
in the resulting environmental impact of the CFB alternatives (Fig 5). This confirms the 
fundamental importance of the use of accurate and comparable LCI data from standardised 
Environmental Product Declarations (EPDs) for specific material products. However, while the 
use of EPD data has essential advantages and gains in popularity, not all material producers 
provide them yet. Next to the use of reinforcing steel produced with the more environmentally 
friendly AEF route (Fig. 5), the use of CEM III/A has shown as an effective approach for all 
concrete strength classes to reduce the GWP of CFBs (Fig. 8b), while no decrease in the 
durability (exposition class) necessary for bridge construction projects has to be expected (VDZ 
Ad-hoc-Arbeitsgruppe, 2008). On the other hand, despite that the LCI data of the average 
concrete (Germany, 2016) indicates a significantly reduced GWP per unit volume for lower 
strength concrete (due to reduced cement content, c.f. Fig. 4), this effect is largely diminished 
by the larger cross-section depth required for structural safety (Fig. 8). This trade-off between 
an increase in sustainability and reduced strength underlines the necessity to consider a 
complete set of design performance objectives concurrently in an early design stage, due to 
their interdependence. This also emphasizes the need and value of computational tools for rapid 
design search space browsing and evaluation as the tool presented in this paper. 

The BCI implementation within this paper has shown several shortcomings concerning its 
application for bridges in an automated manner due to the absence of standardised, objective 
metrics for some indicators and sub-indicators. One critical aspect for the further development 
of a circularity metric for bridges is the consideration of the limited reusability of structural 
elements from bridge structures due to the high cyclic loading and deterioration due to severe 
exposure. The latter may be a limiting factor for circularity in bridge design, since circularity 
concepts established in building structures, such as segmentation, impair the durability of 
bridges and are thus not a priori applicable or suitable. Nonetheless, the overall analysis of the 
circular economy applied to bridge structures clearly shows that the idea of disassembling and 
reusing elements is not considered in bridge design so far and an increase in the circularity of 
bridges thus implies that pertinent concepts of circularity - accounting for the above-mentioned 
challenges - are already considered in the design phase of new bridges structures. 

With the application example on CFB structures the functionality of the forward and inverse 
design model was demonstrated. Compared to state-of-the-art simulation methods, it provides 
computationally more efficient performance prediction while maintaining a high accuracy. The 
generative model furthermore allows innovatively for efficient and accurate design generation 
conditioned on specified performance objectives, which is currently not possible at all with 
software used in AEC practice. While the CVAE provides real time assistance to the structural 
engineer once trained, the set-up of the data generation pipeline, the data generation and the 
training process itself require a considerable amount of time. Therefore, design meta models 
should be as generally applicable as possible. This can be achieved by expanding the design 
sampling and generation to different possible boundary conditions (e.g. different lengths, spans, 
loadings, etc.), which is however beyond the scope of this paper.  

5. Conclusion 

The developed software tool allows for performing cradle-to-gate Life Cycle Assessment 
(LCA) in an automated, efficient and object-oriented manner for any parametric structure type, 
using accurate and comparable LCI data from standardised EPDs and further extends LCA by 
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the bridge circularity index. The integration of the tool into a generative deep-learning, 
performance-based design space exploration and multi-objective optimisation framework 
proved successful for the application example of concrete frame bridges. It assists the structural 
engineer in real time, allowing the identification of key aspects to assess and optimise the 
environmental impact and waste production simultaneously with the conventional bridge 
design objectives informing the high impact early design decisions.  
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