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Abstract. The failure to identify unsafe conditions has been considered a major contributing factor 

to construction accidents. Augmented Reality (AR) goggles have emerged as promising devices for 
warning onsite workers of potential hazards using dynamic visual stimuli. However, there is a lack 

of methods available to quantify the impact of AR warnings on construction workers, hindering the 

evaluation, improvement, and promotion of warning systems. To address this gap, a method to 

measure the impact was developed in this study. Six metrics were designed to quantify the 

performance of system users under the impact of AR warnings. Next, a module integrating object 

detection and eye-tracking was proposed to obtain the metrics. Finally, a case study was conducted 

to validate the feasibility of the proposed method. The results show that the proposed method can 

precisely capture the subtle eye movements of users and successfully quantify the effectiveness of 

warning systems. 

1. Introduction 

The construction industry is considered one of the most dangerous sectors with a significant 

number of accidents occurring every year. A significant contributing factor to construction 

accidents is the failure to promptly identify hazards (Abdelhamid and Everett, 2000). Studies 

have demonstrated that showing workers potential hazards on a construction site can effectively 

reduce accidents (Teizer et al., 2010). With the development of visualisation technology, 

wearable Augmented Reality (AR) has been introduced in the construction safety area to alert 

onsite workers to potential threats through visual prompts (Wu et al., 2021). AR devices can 

visualise real-time hazard information, such as hazardous areas, as holograms in the real-world 

environment, allowing workers to remain focused on their tasks while also being aware of 

surrounding hazards with a quick glance. For example, Kim et al. (2017) developed a wearable 

AR system that uses arrows and text to indicate the direction and distance of the nearest vehicle 

to onsite workers. Wu et al. (2022) developed a visual warning system to identify construction 

hazards through onsite cameras and show the hazard information (i.e., hazard sources, hazard 

types, and hazardous areas) to onsite workers using AR goggles. These studies have 

demonstrated the technical feasibility of using AR technology to improve construction safety. 

However, research on AR warning systems is still in its early stages, and further development 

is required to effectively implement such systems in practice. Currently, a significant challenge 

is the lack of a suitable method to measure the impact of AR alerts on onsite construction 

workers. The absence of this method makes it difficult to evaluate and enhance AR warning 

systems, impeding the development of wearable AR for enhancing construction safety.  

Eye-tracking is a valuable tool for evaluating the usability of Human-Computer Interfaces 

(HCIs) and has been extensively used in high-risk industries such as aviation, maritime, and 

construction (Martinez-Marquez et al., 2021). By providing detailed data on eye movements, 

eye-tracking enables researchers to quantitatively evaluate the strengths and weaknesses of a 

system. For instance, Hareide and Ostnes (2016) demonstrated the effectiveness of a simulator 

for navigation training by analysing visual focus distribution data. Li et al. (2019) used eye-

tracking to analyse the interaction between pilots and flight deck interfaces. Chew et al. (2018) 
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evaluated the impact of in-vehicle visual support on construction equipment operators using 

eye-tracking glasses. Despite the proven benefits of eye-tracking in evaluating digital systems, 

applying eye-tracking techniques to measure the effectiveness of wearable AR systems has not 

received sufficient attention. Therefore, this study aims to develop a quantitative approach to 

measure the impact of AR warnings on onsite construction workers using eye-tracking 

technology. The article is organised as follows: Section 2 reviews the onsite safety warning 

systems and corresponding evaluation methods, as well as the application of eye-tracking in the 

construction safety area. Section 3 introduces the research methodology. Section 4 presents and 

discusses the results of a case study. Finally, the paper is concluded in Section 5. 

2. Literature Review  

2.1 Safety Warning Systems and Evaluation Methods 

With the incorporation of more technology, safety warning systems offer multimodality to help 

onsite workers obtain hazard information in a natural and intelligent manner. As a result, 

evaluating the usability of such warning systems requires more sensitive and accurate methods. 

Teizer (2015) introduced Radio Frequency (RF) to detect the proximity between workers and 

equipment, and he used beepers to draw workers’ attention to potential safety hazards. Due to 

the large amount of noise in the construction site, using auditory signals alone may not be 

effective in delivering hazard information to workers (Teizer et al., 2010). Kanan et al. (2018) 

added vibrators to their proximity warning system to provide tactile warnings. In these studies, 

sound and vibration were used to help workers know whether they were in danger, so the 

experiments focused on the accuracy of hazard identification rather than the impact of warnings 

on workers. Huang et al. (2021) coded the vibration frequency to enrich the information it can 

convey. They designed three vibration patterns with different intervals for a wristband and 

tested the warning effectiveness. Experiment results showed that most workers could 

distinguish the different vibration patterns. The workers believe that a shorter interval 

represents a higher degree of urgency. Sakhakarmi et al. (2021) developed a haptic-based 

wearable hazard communication system and experimentally verified the feasibility of the 

system. The system was configured with 10 vibration motors at different locations on workers’ 

backs to indicate eight relative directions of hazards, three hazard levels, and two hazard types 

using different combinations of vibrations. In the experiment, the eyes and ears of their 

experiment participants were covered to simulate obstructed vision and loud noise, and the 

participants were asked to move to a safe area after detecting the surrounding hazards. The 

experiment validates the feasibility of the system, but it hardly reflects the usability of the 

system. The participants were fully focused on feeling the vibrations and were not involve in 

any construction activities, which is rare in real-life use cases. 

The rise of AR technology brings a more intuitive and efficient way to provide warnings to 

onsite workers (Hou et al., 2020). AR technology visualises hazard information as holograms 

in the real world, which can help workers identify potential threats around them while viewing 

their surroundings. Kim et al. (2017) developed a proximity warning system for AR goggles, 

which provided a natural interaction to help workers identify hazards and avoid accidents. In 

this AR application, an arrow indicates the direction of the nearest construction vehicle, and 

texts show the safety level and the distance between the worker and the vehicle. This AR 

goggle-based system avoids any operational control. Onsite workers can identify the hazards 

around them with a quick glance. However, when evaluating the effectiveness of the system, 

the researchers placed the participants in the centre of a room instead of on a construction site. 
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Such simplification does not consider the holistic decision-making process of workers in 

complex construction scenarios. Wu et al. (2022) integrated Building Information Modelling 

(BIM) into an AR warning system that allows AR devices to provide warnings of multiple 

hazards, including explosions, falling from heights, and struck-by accidents. In their system, 

users can literally see the surrounding hazard areas with annotations in the real world. Their 

experiments only focused on the feasibility of their concept and paid no attention to the impact 

of the visual warnings on users. While the immersive AR experience provides users with hazard 

information in a natural and intelligent manner, it places a higher demand on the usability 

evaluation. First, because AR holograms are merged with the construction environment, 

workers can obtain AR prompts while scanning the environment. The act of obtaining AR 

prompts is natural and difficult to be captured. Second, the visual representation of AR prompts 

varies with the relative position between the worker and the hazard source. The effect of this 

variation on worker performance is difficult to quantify. Finally, the experiment involved a 

large amount of working memory which lasted for a very short period of time. It was difficult 

for workers to make precise recollections of the details after an experiment. 

2.2 Eye-tracking in Construction Safety  

Eye-tracking has already been widely used in the construction safety area for determining the 

hazard identification, situation awareness, and mental workload of construction workers. 

Pinheiro et al. (2016) verified the feasibility of eye-tracking technology in the construction 

safety area. They asked workers to view construction site images and analysed the collected 

Area of Interest (AoI) data. The results demonstrated that eye-tracking technology could clarify 

whether, when, and how a construction worker identifies hazards. Bhoir et al. (2015) used a 

head-mounted eye-tracking device to obtain fixation-related and saccade-related metrics of 

onsite workers and concluded that some workers did fail to notice hidden hazards or even 

hazard signs on construction sites. Hasanzadeh et al. (2018) explored the relationship between 

eye-tracking data and workers’ situation awareness. The results demonstrated that eye-tracking 

could be used to quantitatively measure the extent to which workers are aware of hazards on a 

construction site. Dzeng et al. (2016) compared the search patterns of experienced and novice 

workers by analysing eye movement data and found that experienced workers showed fewer 

fixations, and their scan paths for assessing hazards were more consistent. Similarly, using eye-

tracking data, Hasanzadeh et al. (2017b) demonstrated that hazard identification skills 

significantly affect the visual search strategies of construction workers. Hasanzadeh et al. 

(2017a) experimentally proved that there are significant differences in people’s visual search 

strategies under different working memory loads. These studies focused on applying existing 

eye-tracking technology in construction safety and demonstrated that eye movements could 

reflect well on the performance of workers. The eye-tracking metrics and explanations in the 

existing studies are summarised in Table 1.  

Table 1: Eye-tracking metrics and explanations in the reviewed articles. 

Category Metric Explanation 

Fixation 

Fixation duration The time during which the eyes rest in a fixation 

Fixation count The number of fixations that occur in an AoI. 

TFD The total fixation duration in an AoI 

Scan 
Saccade speed The speed at which the eyes move from an AoI to another 

Fixation sequence The order in which the eyes move between AoI 



4 

 

Physiological 

indicators 

Pupil size The average diameter of pupils within a certain period of time 

Blink frequency The number of times an individual blinks eyes per minute 

Researchers have tried to introduce more technologies to increase the applicability of eye-

tracking technology. Chew et al. (2018) introduced a method to model the gaze pattern of crane 

operators and indicated that varying visual support design elicits different gaze behaviour. They 

divided the operational scene of the crane into several AoI and recorded the duration and 

sequence of workers’ gaze on these areas using eye-tracking devices. Then, a first-order 

Markov transition matrix was used to characterise the attention switch of each crane operator. 

Jeelani et al. (2018) integrated computer vision and eye-tracking into onsite workers’ AoI in 

3D spaces. They use a camera and a head-mounted eye-tracker to capture the workers’ position 

and eye movement data. Then, an algorithm was proposed to combine these two data types for 

transforming workers’ gaze positions from local coordinates to world coordinates in a 3D point 

cloud environment. This method can provide more objective data on gaze position and more 

accurately reflect whether a worker identifies hazards or not. However, each of these studies is 

based on a specific application scenario. The former requires the operator to be in a crane cabin, 

and the latter requires the construction site environment to be consistent with the point cloud 

reconstruction. These specific scenarios make it difficult to generalise and normalise the 

evaluation metrics for different systems. 

2.3 Research Gaps and Research Objectives  

Through the literature review, three limitations have been identified. First, as more modalities 

and natural interactions are introduced into warning systems, conventional metrics (i.e., 

warning accuracy and latency) are insufficient to evaluate the effectiveness of warning systems, 

especially when AR technology is introduced. We need to assess whether workers can perceive 

the existence of hazards, locate the hazards, correctly assess risks, and respond properly to the 

hazards (Wu et al., 2023). Second, there is a lack of standard quantitative methods to measure 

the impact of warning systems on onsite workers. The evaluation methods in existing studies 

were designed based on specific scenarios, leading to difficulties in comparing the efficiency 

and effectiveness of different systems. Although eye-tracking has the potential to objectively 

quantify the impact of warning systems on workers, related research is scant. Finally, existing 

studies have not applied AR warning systems in real construction situations to verify their 

usability. Experiments are less likely to reflect the actual impact of alert systems on onsite 

workers than case studies because the participants have a clear expectation that certain hazards 

will be present during the experiment. To address these limitations, we aim to develop an eye-

tracking-based approach to measure the impact of warning systems on onsite workers. The 

objectives include:  

1) Identifying metrics applicable for evaluating the performance of workers under the impact 

of safety warnings to reflect the process of perceiving, locating, and understanding hazards.  

2) Developing a module that allows the impact of varying warning systems on workers in 

different scenarios to be automatically recorded, analysed, and visualised.  

3) Verifying the feasibility of the proposed evaluation approach in a real construction 

environment.  
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3. Methodology 

3.1 Metrics to Measure Hazard Identification Performance 

The purpose of safety warnings is to help workers quickly perceive, locate, evaluate hazards, 

and respond to them appropriately. The metrics used to measure safety warning systems should 

reflect their performance in these aspects. Accordingly, we categorised the information that the 

warning system can provide into three categories: the existence of hazards, the locations of 

hazards, and other details. Indicating the existence of a hazard to workers is the basic function 

of a safety warning system. To measure the effectiveness of the hazard existence information, 

we follow the method used in existing studies, which considers a warning valid if a worker 

perceives the existence of a hazard within five seconds after a hazard warning is presented. The 

ratio of valid warnings to the total warning number is set as Valid Warning Rate (VWR). The 

duration of receiving information (DRI) represents the time spent being noticed and receiving 

information delivered by warning systems. Workers’ visual attention significantly changes 

when they notice a hazard. Such changes can take the form of viewing warnings or scanning 

the environment for hazards, and eye-trackers can capture them to determine VWR and DRI.  

Since warning information is stored in workers’ working memory, we introduced a working 

memory theory to this study (Peterson and Peterson, 1959). In this theory, the amount of 

information that can be retained in working memory gradually decreases with time. The 

reduction starts quickly and gradually slows down. Generally, the retained information drops 

below 15% after 18 seconds, indicating that workers may need to recheck the warning. 

Therefore, two metrics were used to measure the ability of the warning system to help workers 

locate hazards: the number of rechecks (Recheck Count, RC) and the Duration of Locating 

Hazard (DLH). To measure the extent to which the warning system helps workers assess 

hazards for decision-making, we set the Duration of Decision-Making (DDM) as a metric. This 

refers to the time spent observing hazards. Additionally, the total time was also set as a metric. 

3.2 Measurement Module Development  

In order to obtain the value of these metrics, the following functions are required: 1) tracking 

the location of hazards, 2) tracking the location of workers, 3) tracking the 3D AoI of onsite 

workers, 4) recording the time and duration at which workers check warnings (including 

viewing AR content), and 5) automatically generating metric values for each warning. Two 

modules were developed to implement the above functions, namely, an object detection module 

and an eye-tracking module. The object detection module uses object detection and coordinate 

transformation algorithms to track onsite workers and dynamic hazard areas. It can also invoke 

the positioning Application Programming Interface (API) of AR devices to determine the users’ 

position. The eye-tracking module interfaces with the API of eye-tracking devices to 

continuously monitor the direction of the worker’s gaze and calculate the point where the line 

of sight makes contact with AR holograms or real objects. When a worker views an AR warning 

or looks at a danger zone, the system automatically triggers the appropriate function to record 

coordinate data for generating the metric values, scanpaths, and heat maps. These two modules 

can be integrated into applications developed by the Unity game engine.  

3.3 Case Study 

To test the impact measurement method, we deployed an AR warning system containing the 

developed modules on a Microsoft HoloLens 2, and had a construction cadet wear it to perform 

a three-hour construction activity at a construction site. The activities involved moving 
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materials, pipe laying, formwork, rebar tying, and other works. Workers were required to 

perform these tasks while ensuring their own safety. The AR goggles deployed two types of 

warnings, namely, AR visual warnings developed by Wu et al. (2022) and beeping alarms 

proposed by Teizer (2015). The visual warning provided a holographic arrow pointing to hazard 

sources and a holographic warning sign displaying the hazard types, as shown in Figure 1. 

These two kinds of warnings were switched every 15 minutes to test the performance of the 

worker under different warnings. To ensure safety, we eliminated possible hazards at the 

construction site and used several methods to simulate the unsafe environment. For example, 

when workers moved oxygen cylinders, the areas near acetylene cylinders became hazardous 

areas. So empty bottles labelled acetylene were set instead of real acetylene bottles. Similarly, 

a driver’s blind spot can lead to a struck-by accident, so drivers on the construction site were 

only allowed to get in vehicles to represent the vehicles were about to move rather than actually 

drive them.  

 

Figure 1: An example of the AR visual warnings  

4. Results and Discussion 

The case study demonstrates that the developed module effectively captures the eye movement 

of onsite workers, with an average frame rate of 59.99Hz and a maximum recording interval of 

26.2ms. During the study, the participant received a total of seven warnings, consisting of four 

visual warnings and three beeping alarms. The VWRs for both types of warning were 100%, 

and the participant’s performance under the impact of safety warnings is shown in Table 2. 

Table 2: Eye-tracking results of the case study. 

Warning 

type  

Warning 

No. 

Hazard 

Type 
RC 

DRI 

(ms) 

DLH 

(ms) 

DDM 

(ms) 

Total time 

(ms) 

Visual 

1 Struck-by 0 1001.13 749.67 2232.66 3983.46 

2 Struck-by 0 836.72 826.45 2563.59 4226.76 

3 Exploration 1 1593.27 1426.72 3147.46 6167.45 

4 Electrocution 0 982.03 743.14 1841.33 3566.50 

Ave. - 0.25 1103.29 936.50 2446.26 4486.04 
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Auditory 

5 Struck-by - 482.02 3265.19 3446.10 7193.31 

6 Exploration - 592.08 1515.23 3857.13 5964.44 

7 Struck-by - 518.45 2729.01 2385.92 5633.38 

Ave. - - 530.85 2503.14 3229.72 6263.71 

Time-related metrics show that AR visual warnings have better overall effectiveness than 

beeping alarms. The participant took about twice as long to identify visual warnings 

(1103.29ms on average) compared to detecting beeping alarms (530.85ms on average). 

However, viewing visual information significantly reduced the time spent locating hazards and 

making decisions. After checking the visual warnings, the participant only needed an average 

of 936.50ms to locate hazard sources, which is a significant improvement compared to the 

beeping alarm (2503.14ms). The heat maps and scanpaths reveal that the participant needed to 

scan the environment to identify hazards due to the lack of exact location information. In the 

worst case, the hazard source was located at the fifth fixation, as shown in Figure 2. In contrast, 

the participant could quickly locate the hazard source in a similar situation after viewing the 

AR holograms. Additionally, the participant spent less time making decisions after receiving 

AR visual warnings (2446.25ms for AR visual warnings vs. 3229.72ms for auditory warnings). 

Overall, using AR visual warnings saved 28.38% of the time compared to using beeping alarms. 

 

Figure 2: Heat maps and scanpaths generated from eye-tracking results.  

It is worth noting that a participant viewed an AR hologram twice under an explosion hazard 

situation. The participant did not realise that he had such behaviour until he viewed his eye-

tracking data. This is probably because the amount of information displayed by the AR visual 

warnings in this case exceeded the capacity of the participant’s working memory. The 

participant subconsciously rechecked the warning message and extracted key information to 

consolidate his memory. Therefore, visual warnings should be designed with the appropriate 

information to avoid working memory overload.  
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5. Conclusion  

This study proposes a method to quantify the impact of warning systems on onsite workers 

through the innovative introduction of eye-tracking technology. The proposed method has been 

proven effective in reflecting workers’ performance under the influence of safety warnings. By 

employing eye-tracking technology, the fixation positions, fixation durations, and scanpaths of 

workers can be recorded automatically. These eye movement data can be summarised as six 

quantitative metrics, namely, VWR, RC, DRI, DLH, DDM, and total time, to measure the 

impact of a safety warning on onsite workers. The proposed approach is compatible with eye-

tracking devices and AR goggles, making it applicable to various warning types, including 

auditory, vibration, and AR visual warnings. This enables objective and quantitative 

comparisons between different systems. In addition, the method has been proven to be 

applicable to real construction sites so that researchers can use it to measure and analyse the 

impact of warning systems in real-life use cases.  
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