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Abstract. Buildings consume a substantial amount of energy, with a significant portion dedicated 
to maintaining thermal comfort. However, predicting energy requirements is challenging due to the 
influence of numerous uncertain and difficult-to-measure building characteristics. This uncertainty 
hampers the analysis of potential energy improvement opportunities. We propose a novel approach 
based on generative machine learning (ML) to estimate values of energy related characteristics such 
as heat transfer coefficients, permeability, and occupants. Training the generative ML network 
requires geometrical information, ranges for uncertain values of building characteristics, and energy 
consumption data. The ML network generates sets of possible values for the characteristics. We 
tested our approach on an office building to predict its energy characteristics. Our approach utilizing 
generative ML provides a promising solution for estimating relevant building characteristics. By 
reducing uncertainty in energy predictions, this approach can inform decision-making processes and 
facilitate the development of more effective strategies to achieve energy efficiency. 

1. Introduction 

Energy-efficient buildings are essential for reducing energy use for a sustainable built world. 
While it is important to design new buildings to be energy efficient, it is even more important 
to operate and retrofit existing buildings to achieve their energy saving potential. In the 
European Union, buildings contribute to 40% of the total energy use and are the single largest 
consumer of energy (European Commission, 2019). As of 2020, 75% of the existing building 
stock is energy inefficient. Thus, energy retrofits and efficient building operation are inevitable 
challenges to achieve sustainability in the built world. 

Any intervention to improve energy performance starts with understanding existing conditions 
and developing potential solutions, followed by analysing the effects of such on energy 
performance to assess their suitability. Much information about the existing building is required 
for assessing the effects of interventions on energy use using dynamic simulations (Schlueter 
and Geyer, 2018). Geometry, thermal properties such as heat transfer coefficients (u-values), 
and occupants are examples of characteristics that needs to be quantified to predict energy use 
(Singh and Geyer, 2020). While some characteristics, such as geometry, can be measured easily 
and with a reasonable accuracy, values of other characteristics are difficult to estimate. 
Uncertainty is typically addressed by sampling the characteristics in a large range to predict 
probabilistic energy use (Van Gelder, Janssen and Roels, 2014). 

Model refutation is a commonly used method to estimate values of characteristics of civil 
infrastructure, for example, Cao, Koh and Smith, (2021). The method uses  physical principles 
to model relationships between uncertain characteristics and measurable variables. First, it 
populates sets of values of characteristics within constraints, followed by predicting values of 
measured variables using the model, and finally, retaining the sets of values of characteristics 
corresponding to the measured values of variables. Another method calibrates values of energy 
related characteristics based on actual energy use (Cho and Kim, 2019). More generally, the 
residual minimisation method finds the values for uncertain characteristics that lead to lower 



   
 

error values between measured and predicted values of variables (Sanayei et al., 2015). These 
methods often suffer from either low precision or low accuracy. 

We propose a novel approach based on generative machine learning (ML) to estimate the value 
sets for uncertain characteristics. In our approach, two ML networks are trained. The first 
network (section 3.1) is trained on the data from physical-principle models and predicts energy 
uses based on the values of characteristics. This is often called surrogate modelling. The second 
network (section 3.2) is a generative ML network that generates sets of values for building 
characteristics that have energy use predictions that are similar to measured values. The 
generative ML network is trained to predict sets of values of uncertain characteristics to 
minimise errors between predicted and measured values of energy use. 

2. Methods to estimate values of building characteristics 
Estimating values of characteristics of existing buildings is an important subtask when 
estimating current performance and the effects of proposed interventions. While a few 
characteristics require simple measuring tools, others require complex investigative methods. 
Moreover, values of many characteristics related to building operation remain uncertain. The 
most relevant characteristics, required for energy modelling, are summarised, as follows: 
Geometry: Energy modelling requires size and location of walls, floors, ceilings, roofs, and 
windows. This information is usually collected in the three-dimensional coordinate system 
using either simple measuring tapes or advanced laser scanners. Advanced handheld devices 
allow this information to be exported for performance analysis (Mêda, Calvetti and Sousa, 
2023). 
Thermal characteristics: The most relevant characteristics for energy modelling are u-values, 
solar heat gain coefficients (g-values), and air permeability. u-values are determined by 
measuring thicknesses of each material layer and their thermal conductivity. The calculated 
values do not consider variation caused by deficient construction and deterioration. The g-value 
of transparent elements is determined by manufacturer specifications. In Germany, air 
permeability is mostly determined based on construction quality (DIN Normung, 2016).  
Internal conditions: Energy use varies greatly due to internal conditions and occupant 
behaviour (Gaetani, Hoes and Hensen, 2018). Primarily, building use, number of occupants, 
ventilation requirement, temperature setpoints, light and equipment heat gains, as well as 
internal mass affect the energy use. These characteristics are difficult to be quantified even with 
the most sophisticated methods. Moreover, manual control leads to higher uncertainties. 

Coefficient of performance (COP): The nominal efficiency of equipment is usually provided 
by manufacturers. However, variations may occur due to environmental conditions. 

Thus, we assume geometry to be deterministic while thermal characteristics, internal 
conditions, and COP are taken to be uncertain within given ranges for energy modelling. 
Further, we assume that the energy use is measured for some time intervals. 

2.1.Model refutation and residual minimisation to estimate uncertain characteristics 
One of the methods for estimating existing characteristics is based on model refutation (Smith, 
2016). In this method, target parameters, which can be measured, are identified. The method 
assumes that relationships between characteristics and target parameters can be modelled using 
physical-principle models. It further assumes that values of the existing characteristics are 
defined by ranges of possibilities. These ranges are used for sampling the values of  



   
 

characteristics and the model predicts values of target variables. Using these predictions, the 
measured values of target variables, and estimations of uncertainty ranges, the method refutes 
sets of values of characteristics. This method is widely used in structural health monitoring 
(Goulet, Kripakaran and Smith, 2010; Goulet and Smith, 2013; Pai and Smith, 2022). 
While model refutation requires generating sets of values for characteristics in given ranges to 
find suitable sets, residual minimisation tunes the model parameters such that the error residuals 
between the measured and model estimated values of target variables are minimised (Sanayei 
et al., 2015). However, the residual minimisation method is not model independent. Most 
importantly, an implicit assumption is the absence of systematic errors, which is rarely the case. 

2.2.Estimation of building characteristics for energy modelling 
Primary data sources for estimating energy related characteristics in the existing building are 
technical drawings, standards, manufacture specifications, and on-site audits. (Cho and Kim, 
2019) used this information with measured energy use to calibrate energy related 
characteristics. The energy related characteristics are calibrated in a physical model so that it 
predicts the same energy use as measured. The approach can be extended to residual 
minimisation to find sets of values for building characteristics that have the same energy use as 
measured. However, without inclusion of systematic modelling errors, inaccurate results are 
expected, particularly when extrapolating. The alternative strategy is also challenging; the 
model refutation method often requires exploring large population spaces, which is 
computationally inefficient using dynamic energy simulations. 

3. Generative ML approach to predict values of building characteristics 
This paper presents a model independent approach to predict values of characteristics using 
generative ML. The presented approach replaces dynamic energy simulations by an ML 
network that models relationships between uncertain characteristics and measured variables. 
Further, it trains a generative ML network that produces sets of values for characteristics that 
minimises error residuals between the predicted and measured values of target variables. The 
generative ML approach can be divided in two steps, as follows: 

3.1.Data collection and the regressor network 

We assume that energy analysts collect geometrical information with a handheld device. 
Further, they provide additional information such as u-values, occupancy, etc. in the form of 
ranges of values since these characteristics are difficult to determine with certainty. We sampled 
these uncertain characteristics and used their values with geometrical details to create energy 
models in the dynamic simulation tool EnergyPlus (National Renewable Energy Laboratory, 
2022). The run periods are defined based on available information about energy use. We treat 
energy use for several run periods as different ‘target variables’. For example, energy uses for 
January and February, are treated as two target variables. 

First, we need a network that predicts energy use, i.e., target variables based on the values of 
characteristics. We refer to this network as ‘regressor’ which is trained on the simulation data, 
as shown in Figure 1. A two-layer neural network is used for the regressor. We used L2 
regularisation and early stopping to prevent overfitting. We experimented with a number of 
hyperparameters, namely, the number of layers and neurons, the regularisation coefficient, and 
the learning rate. The hyperparameters are tuned using the hold-out validation (Yadav and 
Shukla, 2016). A network with the least validation loss (mean squared error) is considered for 



   
 

further evaluation. A naive approach to predict values of uncertain characteristics will be to 
invert this model. The inverted model takes the measured energy use as input and predicts the 
values of uncertain characteristics. The naive approach predicts only one value for each 
characteristic while causal effect diagnosis requires generating sets of values for characteristics. 

 
Figure 1: A generative ML model to predict set of values for energy related characteristics 

3.2.The generator network for predicting the values of building characteristics 

The generator network takes a one-dimensional random array as input and predicts sets of 
values for the uncertain parameters. The predicted sets of values are fed to the ‘regressor’ that 
predicts target variables. Based on the difference between observed and predicted values, errors 
are calculated, and the ‘generator’ is trained. The generator is a  neural network with a 
maximum of two layers. We adopted two strategies to ensure that the generator does not predict 
values of characteristics outside their defined ranges. The output of the last layer is fed to a 
‘hard sigmoid’ activation layer with a custom activity regulariser on its output. Hard sigmoid 
activation, 𝑓(𝑥), linearly maps the values between (-2.5, 2.5) to (0, 1), 𝑥 < −2.5 to 0, and 𝑥 >
−2.5 to 1, as described in Equation 1. 

𝑓(𝑥) 	= 	𝑚𝑎𝑥	(0,𝑚𝑖𝑛(1,
𝑥 + 1
2 )) … (1) 

However, just using this activation function has a drawback: the last layer can still predict 
values outside the range of (-2.5, 2.5) and the activation layer will assign (0, 1), respectively. 
Therefore, we used an activity regulariser that adds a penalty, ‘P’, whenever the output of the 
last layer is outside the range of (-2.5, 2.5). 100 is the regularization coefficient. This activation 
function penalises any predictions outside the selected range, see Equation 2. 

𝑃(𝑥) 	= 	 60			𝑖𝑓	 − 2.5 ≤ 	𝑥	 ≤ 	2.5	𝑒𝑙𝑠𝑒
100	 ×	 ln(𝑎𝑏𝑠(0.4	 × 	𝑥))	  … (2) 
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We used a custom loss function that defines the loss as the minimum of mean square errors 
between the predicted and observed values of the target variables, see Equation 3. K is the 
number of target variables, n is the number of training samples, y is the measured value and 𝑦A 
is the predicted value of a target variable. This loss function reduces the error for any of the 
target variables; thus, allowing the network to match the observed and predicted values for one 
target variable at any iteration. 

𝐿𝑜𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	 = min
!	#	$	%&	'

I(𝑦(! 	− 	𝑦A(!))
*

(	#	$

 
… (3) 

Once the generator network is trained, it predicts sets of values of characteristics that satisfy 
their pre-defined constraints, and the measured energy uses. Since we found that one generator 
network does not predict significantly different sets by changing random input, we trained many 
generators with different values of hyperparameters. Since many models are required, we 
cannot select the model with the least validation loss. We used 80% of the best performing 
generators to predict sets of values for uncertain characteristics. 

4. Tausendpfund building 
We tested the proposed approach for the office building ‘Tausendpfund’ in Regensburg, 
Germany (Vollmer et al., 2019). The building has three floors with an approximate floor area 
of 1200 m2. Figure 2 shows the zones of the building, as in the energy model. 

 
Figure 2: Floor plans of the testcase building 

The construction of walls, windows, floors, and roof are modelled as built and described in 
(Vollmer et al., 2019). We assumed uncertain u-values since as-built information is mostly 
unavailable. The u-values are sampled within the possible value ranges and the thickness of 
insulation layer is varied to achieve sampled u-values in the energy model. A generic 
classification of Type-II buildings corresponds to an air permeability of around 6 m3/m2h. We 
assumed a fixed schedule for occupancy, lighting, equipment, and setpoints; however, 
uncertainty in their values, as mentioned in Table 1 is considered. The building has a heat pump 
that supplies heat through an underfloor heating system. We used a heat pump object in 
EnergyPlus model that supplies air to individual zones to mimic the system. The COP of the 
heat pump is the most relevant parameter in this regard. Table 1 summarizes energy-related 
characteristics, their possible ranges of values, and measured values (if available). Using the 
naive approach, we also predicted values of building characteristics corresponding to energy 
use in 2017 and 2018. 
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Table 1: Possible value ranges and measured / calculated values of building characteristics 

Building characteristic 
Possible value 

range 

Measured / 
calculated value 

Predicted values (using 
the naive approach) 

 2017 2018 

u-value: Walls (W/m2K) 0.15 – 0.25 0.18 0.24 0.20 

u-value: Floor (W/m2K) 0.15 – 0.25 0.19 0.24 0.21 

u-value: Roof (W/m2K) 0.10 – 0.20 0.15 0.19 0.16 

u-value: Window (W/m2K) 0.60 – 1.00 0.87 1.00 0.78 

g-value (-) 0.30 – 0.50 0.35 0.40 0.32 

Permeability (m3/m2-h) 5.40 – 6.60 Not available 6.44 6.10 

Occupancy (persons/sq. m.) 16 – 24 22 (as in layout) 21.18 21.04 

Heating setpoint (℃) 19.0 – 23.0 21 (as documented) 26.33 20.90 

Internal mass (kJ/m2) 18.0 – 30.0 Not available 28.40 24.82 

Light heat gain (W/m2) 4.50 – 7.50 Not available 6.96 6.08 

Equipment heat gain (W/m2) 6.00 – 10.00 Not available 9.02 8.30 

Coefficient of performance (-) 1.80 – 3.00 Not available 3.30 2.27 

5. Results 
We sampled 100 sets of uncertain characteristics and created energy models. We used energy 
use data of the heating seasons of 2017 and 2018. We defined four run periods in energy models, 
i.e., November, December, January, and February. An Apple M1 Max (10-cores) machine is 
used for this research to report times for different steps. It takes 6.4 minutes to create energy 
models and perform simulations. A ‘regressor’ network is trained on the simulation data. The 
regressor takes values of uncertain parameters as input and predicts the energy use for the run 
periods. We tuned hyperparameters of the regressor using one-holdout-cross-validation set. 
After training the regressor for 4 random sets of hyperparameters, we found a network with the 
least validation loss of 0.0019 sq. MWh (mean-squared-error). It takes around 1.15 minutes to 
train the regressor, which is saved and used further. 
A ‘generator’ network takes random input and predicts values of the characteristics. The set of 
input parameter values is fed to the regressor that predicts the energy use for the selected run 
periods. We trained the generator with many sets of hyperparameters, as mentioned in Table 2:. 
Training the generator for one set of hyperparameters takes around 8 seconds. We trained 125 
generators and used the top 80% (100) to predict 100 sets of values for the characteristics. 

Table 2: Values of hyperparameters for generator 

Hyperparameter Values 

Number of neurons (layer 1) 40, 60, 80, 100 

Number of neurons (layer 2) 0 (no 2nd layer), 10, 20, 30 

Learning rate 1e-2, 3e-3, 1e-3, 3e-4 

Figure 3 shows the predicted sets of uncertain characteristics on a parallel axis plot. The axes 
show uncertain characteristics with their min-max values. A line shows a set of values for 



   
 

characteristics with the predicted energy use in the four months. The colour of a line shows the 
error between the measured and predicted values of target variables. A generator generates only 
one set of values of input parameters even with different random inputs; however, retraining 
the generator on a different set of hyperparameters yields different values of input parameters. 
One line in Figure 2 represents the predicted values of characteristics from one generator model. 
The possible values for the characteristics are distributed along the entire axes. It suggests that 
parameters can have any value between their defined ranges. However, we can find suitable 
sets of values that have similar energy use as measured. Further, there is a difference between 
the predicted and the measured energy use. A set of values may not be suitable for all run 
periods, and it may cause a significant difference from measured values for some run periods. 
On average, the target variables for predicted sets of values have a difference of 23.2% 
(November), 4.9% (December), 17.5% (January), and 9.3% (February) from their measured 
values. 

 

Figure 3: Predicted sets of values of parameters to achieve observed energy performances 

The most generic approach is to sample uncertain characteristics in specified ranges and make 
probabilistic energy use predictions. The ML approach trained the generator network so that it 
only predicts the set of values to achieve the measured energy use. The energy predictions have 
a lesser uncertainty when using the predicted sets of values for uncertain characteristics than 
random sampling. Figure 4: shows the distribution of values of target variables. The left side of 
violin plots shows the distribution of the energy use values when the values of characteristics 
are randomly sampled, and the right side shows when the values of characteristics are predicted 
by the generator. It shows that energy use is more uncertain for random sampling than for ML 
predicted sets. Further, we calculated the 95% confidence interval for both the approaches, as 
mentioned in Table 3: We found that the confidence interval is smaller for ML predicted sets 
than for random samples of uncertain characteristics. However, there is a significant difference 
between the measured and predicted values. 



   
 

Table 3: 95% confidence interval of target variables using random sampling and ML predicted sets 

Run period Random sampling ML predicted sets 

November 2.83-4.87 3.41-4.35 

December 5.43-8.39 6.09-7.38 

January 5.31-8.09 5.92-7.13 

February 4.30-6.49 4.85-5.81 

 

Figure 4: Distributions of energy use values using ML predicted sets and randomly sampled values  

6. Discussion 
The paper presents a method to determine values of energy related characteristics based on 
measured energy use. Using ML networks, we achieve computational efficiency and eliminate 
the need to randomly search the parameter space as required in model refutation approach. 
Moreover, physical principle models in other work are substituted by ML networks, making it 
model-independent. It can be used to determine the sets of values for any characteristics as long 
as an ML network can model the relationship between the characteristics and measurable 
variables. Challenges associated with determining energy related characteristics are described 
as follows. 
Energy modelling: Creating energy simulation models to mimic real building conditions is a 
challenging task due to lack of information and modelling complexity. For example, we 
considered heating setpoint of office spaces will be the same throughout the season. However, 
setpoints are adjusted by occupants and may not be recorded in many cases. Moreover, a manual 
control will be difficult to model. Further, parameterising energy models requires more 
simplification. The lack of information and needed simplification leads to a mismatch between 
simulated and actual energy performance. This prediction gap is a wide area of research that 
cannot be discussed in the scope of this article. 
Weather data: We used publicly available historical weather data for the city (location), since 
more specific weather data may not be available for many buildings. This approach will not be 
suitable if energy use is measured for very short periods such as hourly, daily, or weekly. The 
periods should be sufficiently large so that minor variations do not affect simulation results. In 



   
 

the testcase, there are large differences between energy uses for the same months of two years. 
Since we used historical weather data, simulations predict the same values for both years. 
Generative ML model: We used a hard sigmoid activation function and a custom activity 
regulariser to ensure that the values of characteristics are within the predefined ranges. The 
output of the generator is scaled back from 0-1 to min-max values and it is constrained to only 
generate values between 0-1. Further, we found that one generator provides only one set of 
values, irrespective of random input. It requires training many generators to find different sets 
of values for characteristics. 
Comparison with other methods: The proposed approach reduces the residuals between 
measured and predicted values of target variables by training an ML network that generates the 
sets of values of uncertain characteristics. An ML network is used as a surrogate to achieve a 
higher computational efficiency and iteratively minimise errors by training parameters of the 
ML network. The approach is useful when we search for value sets using constraints. The 
iterative approach of model refutation can lead to either finding no solution or searching many 
possible sets. Opposed to this, assuming that the simulation is perfect with no uncertainty, the 
ML network can always find values of characteristics in desired ranges. However, large 
deviations from the measured values of target variables can occur, if the ranges of possible 
values of characteristics are unrealistic or incompatible. The naive approach (residual 
minimisation) may lead to incorrect values of existing characteristics since only one set of 
values for uncertain characteristics represents only one of many possibilities. In future work, 
the method to incorporate uncertainties in the simulation model will be investigated. 

7. Conclusions 

A physical principle simulation model is used to simulate the as-built scenario and collect data 
for training ML networks. It is important to ensure high precision in the simulation models to 
minimize discrepancies between simulated and actual performance, which could lead to higher 
errors. Additionally, domain knowledge is required to define the ranges of unknown or 
uncertain characteristics. The ML approach involves two components: a regressor and a 
generator. While training the regressor is relatively straightforward based on the least validation 
loss, training the generator is more complex. Automation of the training process based on 
predefined metrics helps facilitate the adoption of this approach by energy experts. The results 
demonstrate that this approach reduces uncertainty in the values of target variables compared 
to random sampling of uncertain characteristics. This reduction in uncertainty enables a more 
precise analysis of the effect of design interventions. The predicted sets of values for uncertain 
characteristics generated by the ML approach offer valuable insights for analysing the impact 
of design interventions on energy consumption. The approach outlined in this research paper 
has the potential to enhance the decision-making process in energy optimization and contribute 
to more sustainable and efficient design practices. 
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