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Abstract. Accident prevention in the construction industry is more than important considering 

steady high accident rates. To prevent construction accidents, it is crucial to identify dangerous 

objects and possible accident types caused by such objects in advance. Thus, the authors 

developed machine-learning models that predict accident types (e.g., fell, crushed, tripped, 

struck by) and accident-causing objects (e.g., temporary facility, tool, machinery, materials) 

based on construction project data including activity types, work progress, weather conditions, 

and safety planning levels. The performances of four prediction algorithms were compared to 

determine the optimal algorithm for separate accident types and objects prediction models. As 

a result, XGBoost showed best performance for both models with the weighted average F1-

score of 0.874 and 0.749, respectively. The results of this study can contribute to construction 

accident prediction by informing practitioners about dangerous and accident-inducing 

conditions in advance. 

1. Introduction 

Despite continuous efforts to improve safety, the construction industry is often considered more 

dangerous than other industries (Kim & Chi, 2019; Z. Zhang et al., 2023). Construction accounts 

for more than 30% of all fatal accidents across industrial sites, while the employment rate is 

approximately 7% worldwide. In addition, construction accident rates have been increasing 

steadily in recent years (KOSIS, 2022). Therefore, construction accidents are a burden on countries 

as they cause social anxiety and economic losses (Chen et al., 2022; Koc & Gurgun, 2022).  

Accordingly, governments, including the Occupational Safety and Health Administration (OSHA) 

in the United States and the Korea Authority of Land and Infrastructure Safety (KALIS) in Korea, 

have collected data on construction projects and attempted to investigate the types and causes of 

recurring accidents using the data. Similarly, several studies have explored construction project 

data to identify the causes of accidents and prevent safety disasters. In particular, some researchers 

have developed models to predict potential accident types using the collected data (Cho et al., 2022; 

Lee et al., 2020; Tixier et al., 2016). However, existing studies are limited in that they consider 

detailed construction project data, such as activity types, work progress, weather conditions, and 

safety planning levels when predicting accidents, which are the important sources to explain 

accident-inducing conditions on site. In addition, because the previous studies focus mainly on 

predicting accident types, such as slips and falls, it is difficult to identify and respond to the 

accident-causing objects (e.g., heavy equipment and temporary facilities) because these are the key 

factors leading to accidents.  
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To overcome the limitations of previous approaches, this study aims to develop a machine learning 

(ML) model that uses construction project data to predict the types of construction accidents and 

the target objects. The model uses only basic information about a given construction site, and can 

predict the most likely accident objects and types. This allows construction site managers to 

respond to and prepare for the possible accidents in advance. 

2. Literature Review 

Research on preventing construction accidents by analyzing construction project data has been 

conducted in a variety of ways. Most early studies investigated statistical methods to identify the 

factors that cause construction accidents (Cheng et al., 2010; Chong & Low, 2014; Molenaar et al., 

2009; Shapira et al., 2009; Wu et al., 2015). In studies that used simple statistical analysis, the 

accident frequency by factors such as worker age, a contractor size, and a day of the week was 

analyzed to determine the main factors that influence accidents. For example, López Arquillos et 

al. (2012) found that most accidents occurred on Monday. However, these simple statistics are 

often too general as common senses and do not contribute significantly to accident prevention. 

Other studies have conducted more detailed statistical analyses. Molenaar et al. (2009) employed 

structural equation modeling (SEM) to suggest guidelines for construction stakeholders to prevent 

accidents with the paths from sources to events. Cheng et al. (2012) used a classification and 

regression tree (CART) to analyze factors that are highly correlated with construction accidents, 

and succeeded in distinguishing accident situations in which falls and trips occur frequently. These 

studies are novel in that they identify the most important accident factors on construction sites; but, 

they are limited to representative construction-related accident factors, which makes it difficult for 

practitioners to use them on site. 

The other researchers have conducted accident prevention studies by predicting accidents using 

machine learning algorithms (Cheng et al., 2020; Poh et al., 2018; Sadeghi et al., 2020; Zhang et 

al., 2019). For instance, Choi et al. (2020) developed a fatal accident prediction model using 

construction worker data; because the model only used data from workers, it did not reflect the 

characteristics of different sites. Kang and Ryu (2019) proposed a model to predict the accident 

types that are likely to occur based on construction site data. However, it was limited in its ability 

to provide safety managers with information about which objects might cause accidents. 

To prevent construction site’s accidents, it is necessary to prepare not only for the types of accidents 

but also for the objects that cause them. Construction-site safety managers still have difficulty in 

determining the objects that cause accidents. Therefore, in this study, the authors developed a 

model to predict the types of accident and a model that predicts the object causing the accidents 

using construction project data.  

3. Methodology 

In this study, an accident prediction model was developed based on Construction Safety 

Management Integrated Information (CSI) data managed by KALIS. Figure 1 illustrates the 
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research process, which consists of three steps. In the data preparation step, the CSI data were 

cleaned, the key variables were determined, and training and test datasets were prepared by data 

balancing. In the second step of model optimization, four machine learning models (Random Forest; 

RF, Light Gradient Boosting Model; LGBM, extreme Gradient Boosting; XGBoost, Categorical 

Boosting; CatBoost) were learned using the training dataset for predicting accident types and target 

objects. Then, cross-validation was performed to compare the model performances and select the 

optimal model. In the final step of model evaluation, the optimal model was evaluated using four 

metrics: accuracy, F1-score, precision, and recall. The overall process was performed using Python 

version 3.6.8. 

 

Figure 1: Research Process 

3.1 Data Preparation 

The data collected from the CSI includes 13,045 construction accident records from 2019 to 2022. 

The dataset from CSI consists of scene, worker, and accident information. The scene information 

has 21 variables (e.g., a process type, a process rate, and the number of workers), and the worker 

information includes 20 variables (e.g., gender, age, a level of injuries). Accident details are 

explained by the accident information, which consists of 30 variables (e.g., an accident type, an 

accident object, and an accident location).  

Data cleaning was performed to generate input data for the model. The data with 15% or more 

missing values and the variables having 50 or more categories were eliminated first. Second, the 

variables that were highly skewed toward a particular category were removed because they were 

deemed meaningless. For example, male workers, who made up 98% of the entire dataset, were 

excluded. Numeric variables (e.g., construction cost, a process rate, and a bid rate) were converted 

into categorical variables. Finally, using correlation analysis, the authors removed the variables 

with low importance from the combinations of two variables with Cramer’s V coefficients of 0.5 

or higher to avoid a multicollinearity problem. Eventually, the authors obtained 9,671 data of 18 

variables out of a total of 13,045 data of 71 variables. 

The pre-processed data were divided into training (80%) and test (20%) data. The training data 

were then divided into classes, which resulted in a data imbalance problem. Oversampling 

techniques are normally used to prevent algorithm degradation (Chang et al., 2023). In this study, 
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the authors used the synthetic minority oversampling technique (SMOTE), a common 

oversampling technique used to solve overfitting problems (Douzas & Bacao, 2019; Feng et al., 

2021). This sampling process was performed using the scikit-learn 0.24.2 and imbalanced-learn 

0.7.0, Python libraries. The dataset information for the accident-object and accident-type prediction 

models is summarized in Table 1, and Table 2. 

Table 1: Variables of the final dataset 

Category Variable Value type 

Scene information 

(13) 

Ordering organization Categorical 

Weather Categorical 

Temperature Numerical 

Humidity Numerical 

Facility type Categorical 

Construction type (Major) Categorical 

Construction type (Minor) Categorical 

Construction cost Categorical 

Process rate Categorical 

Number of workers Categorical 

Work process Categorical 

Location (Province) Categorical 

Design safety review status Categorical 

Accident information 

(5) 

Accident month Categorical 

Accident day of the week Categorical 

Accident time zone Categorical 

Accident object Categorical 

Accident type Categorical 

Table 2: Dataset description 

Model Predictive variables Number of data oversampled 

Accident 

object 

Temporary facility, tool, machinery, structure, 

construction member, soil and rock, materials, others 

Train: 19,673 

Test: 4,919 

Accident 

type 

Crushed, tripped, fell, pinched,  

struck by an object, hit, slashed, others 

Train: 14,886 

Test: 3,722 
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3.2 Model Optimization 

In this study, two separate models were developed to predict dangerous objects and accident types. 

The optimal algorithm for each model was determined by comparing the performances of the four 

algorithms. Those algorithms are the most commonly accepted in the latest research on the subject. 

The four algorithms were tuned using training data sampled via a grid search. Five-fold cross-

validation was performed to determine the optimal hyperparameter combination using the grid-

search best-param libraries. The hyperparameter combinations for each algorithm are explained in 

Table 3. 

Table 3: Grid search value for algorithms 

Algorithm Grid search value (hyperparameter) 

XGBoost 
Max_depth: 7-11 (interval: 2), Min_child_weight: 1-7 (interval: 2),  

colsample_bytree: 0.25-0.75 (interval: 0.25), n_estimators: 10-300 (interval: 10) 

CatBoost 
Max_depth: 7-11 (interval: 2), learning_rate: 0.01-0.5 (interval: 0.1),  

n_estimators: 10-300 (interval: 10) 

LGBM 
Max_depth: 7-11 (interval: 2), Num_leaves: 7-13 (interval: 2),  

learning_rate: 0.01-0.5 (interval: 0.1), n_estimators: 10-300 (interval: 10) 

RF 
Min_samples_split: 3-7 (interval: 2), Min_samples_leaf: 3-7 (interval: 2),  

n_estimators: 10-300 (interval: 10) 

 

After training the model with the optimal hyperparameters, an optimal algorithm was selected by 

comparing the weighted average F1-score. The F1-score was derived from two metrics: precision 

and recall. The weighted average F1-score was calculated from the mean of all F1-scores per class, 

taking into account the support of each class’s support. The precision is the ratio of positive 

predictions that are actually positive, the recall is the ratio of actual positive cases that were 

correctly predicted to be positive, and the support refers to the number of actual occurrences of a 

class in the dataset. The weighted average F1-score was calculated using Equation 1. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
∑ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖 ×

2

(
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
)+(

1

𝑅𝑒𝑐𝑎𝑙𝑙𝑖
)

𝑁
𝑖=1                    (1) 

Data processing was performed using the Python libraries scikit-learn 0.24.2, Lightgbm 3.3.2, 

CatBoost 1.1, and XGBoost 1.4.2. 

3.3 Model Evaluation 

Finally, the performance of the selected algorithm was evaluated. Four metrics (accuracy, precision, 

recall, and F1-score) commonly used to evaluate the performance of machine learning models were 

used. Next, the authors analyzed the confusion matrix of each model to discuss the prediction 

results for each detailed variable. The authors then looked into the recall values of each detailed 

variable to identify confounding variable combinations. Based on the analysis results, data 

collection and organization problems and the ways to improve the model were discussed. 
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4. Experimental Results and Discussion 

4.1 Model Optimization Results 

Table 3 lists the optimal hyperparameters and weighted average F1-score of the four algorithms 

for both models. For the accident-object prediction model, the optimal hyperparameter 

combinations were 9 maximum depth, 3.0 minimum child weight, 0.75 colsample by tree, 200 

estimators for XGBoost; 11 maximum depth, 0.2 learning rate, 250 estimators for CatBoost; 9 

maximum depth, 13 leaves, 0.4 learning rate, 200 estimators for LGBM; 3 minimum sample split, 

3 minimum samples leaf, 300 estimators for RF. The optimal hyperparameter combinations of 

accident-type prediction model were 11 maximum depth, 1.0 minimum child weight, 0.75 

colsample by tree, 300 estimators for XGBoost; 11 maximum depth, 0.3 learning rate, 250 

estimators for CatBoost; 11 maximum depth, 13 leaves, 0.5 learning rate, 200 estimators for LGBM; 

3 minimum sample split, 3 minimum samples leaf, 300 estimators for RF. 

After training both models with the optimal hyperparameters, the weighted average F1-score was 

obtained, as listed in Table 4 and Figure 2. For the accident-object prediction model, XGBoost 

yielded the highest weighted average F1-score of 0.874 and was selected as the optimal algorithm. 

Similarly, for the accident-type prediction model, XGBoost had the highest performance of 0.749 

and was determined as the optimal algorithm. In summary, XGBoost outperformed other 

algorithms for both models. 

Table 4: Optimum hyperparameter and weighted average F1-score of each algorithm 

Model Algorithm Optimum hyperparameter 

Weighted 

average 

F1- score 

Accident 

object 

XGBoost 
Max_depth: 9, Min_child_weight: 3, colsample_bytree: 0.75, 

 n_estimators: 200 
0.874 

CatBoost Max_depth: 11, learning_rate: 0.2, n_estimators: 250 0.864 

LGBM Max_depth: 9, Num_leaves: 13, learning_rate: 0.4, n_estimators: 200 0.862 

RF Min_samples_split: 3, Min_samples_leaf: 3, n_estimators: 300 0.859 

Accident 

type 

XGBoost 
Max_depth: 11, Min_child_weight: 1, n_estimators: 300,  

colsample_bytree: 0.75 
0.749 

CatBoost Max_depth: 11, learning_rate: 0.3, n_estimators: 250 0.730 

LGBM Max_depth: 11, Num_leaves: 13, learning_rate: 0.5, n_estimators: 200 0.730 

RF Min_samples_split: 3, Min_samples_leaf: 3, n_estimators: 300 0.738 
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Figure 2: Results of the model performance comparison 

4.2 Model Evaluation Results and Discussion 

Table 5 summarizes the accuracy, precision, recall, and F1-score of each model. Both models 

performed acceptable, with the accident-object prediction model performing better with an 

accuracy of 0.879, precision of 0.873, recall of 0.878, and F1-score of 0.874. The accident-type 

prediction model achieved an accuracy of 0.776, precision of 0.768, recall of 0.776, and F1 score 

of 0.771. Both models performed equally well on all four metrics. 

Table 5: Model evaluation results 

Model Accuracy Precision Recall F1-score 

Accident object 0.879 0.873 0.878 0.874 

Accident type 0.776 0.768 0.776 0.771 

 

The confusion matrix for the final model is shown in Figure 3. A confusion matrix analysis of the 

accident-object prediction model showed that ‘temporary facilities’ and ‘materials’ had low recall 

values (0.590 and 0.748, respectively). These two variables are often confused with each other, 

which affects the predictive performance. For example, 86 of the actual accidents caused by 

‘temporary facility’ were predicted by ‘materials,’ while 79 of the actual accidents caused by 

‘materials’ were predicted by ‘temporary facility.’ Because ‘temporary facility’ is a broad term, 60 

of the actual accidents caused by ‘temporary facility’ were incorrectly predicted as ‘others.’ In the 
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accident-type prediction model, three variables (i.e., tripped, fell, and struck by an object) yielded 

low recall values (0.415, 0.532, and 0.652, respectively). Unlike the other variables, these three 

variables were confused with each other, probably because of the similarity of the accident event. 

For instance, if a person trips over a material on the floor and falls out of the building, this would 

include two accident types: ‘tripped’ and ‘fell.’ Also, falling after being hit by a collapsed structure 

makes it difficult to specify one accident type. Thus, data entry issues were noted in such cases. In 

the case of an accident where a worker tripped and injured his ankle, the accident was reported as 

‘struck by an object,’ even though it was ‘tripped.’ In another accident, where a worker who fell to 

the ground while installing system scaffolding and was moving without wearing a safety harness, 

there were two accident types: ‘tripped,’ ‘fell,’ but only entered as ‘fell.’ 

In summary, the accident-object and accident-type prediction models performed well, but there 

were some issues that needed to be resolved. For both models, there were ambiguities in the 

prediction of some variables. In particular, the accident-type prediction model has data input 

problems. Thus, the project data entry process for construction projects needs to be improved. In 

addition, data quality must be enhanced by providing better data entry guidelines to accident 

reporters. This will allow the models to perform better than current models. 

 

Figure 3: Results of confusion matrix: (a) accident object model; (b) accident type model 

5. Conclusion 

In this study, a machine learning model is proposed to predict accident-causing objects and accident 

types based on construction project data. The authors determined the optimal algorithm for each 

prediction model by comparing the performances of four algorithms. Consequently, XGBoost was 

found to be the optimal algorithm for both prediction models for accident-causing objects and 

accident types, showing good performance. This study contributes to the prevention of construction 

accidents by providing practitioners with information about dangerous conditions and potential 

accident types. For example, safety managers working in the construction site have the capability 

to input field information into the model, enabling them to proactively identify and prepare for 

hazardous objects and potential accident scenarios. In addition, the results of this study can help 

improve current construction project data collection systems and establish guidelines for accident 

reporters in data entry. These results also provide further research opportunities, such as the 
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development of a model to evaluate the safety level of construction sites and the impact analysis 

of accident-causing factors on site safety. 
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