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Abstract. In digital design methods of civil engineering projects, such as in Building Information 

Modeling (BIM) approaches, the procedure of validating specifications and regulations against a 

building model is commonly referred to as code compliance checking. In recent developments, 

initiatives and research projects focusing on the progressive harmonization and digitization of smart 

standards, open data formats have been increasingly investigated for enabling exchange of 

requirements between clients and contractors. The application of open formats for model checking 

can help to simplify and speed up certain processes, such as improving communication among 

stakeholders prior to the submission of building permits by providing the ability to semi-

automatically check the quality of the data exchanged. However, the potentials of available 

standards are currently not utilized in full. Firstly, known standards are primarily checking semantics 

only, insufficiently utilizing available geometric definitions. Secondly, checking a model for 

complex functional requirements, such as finding escape routes in buildings, quickly exceeds the 

limitations of known open formats. This paper presents OpenBIMRL, an open format and potential 

approach to define and validate functional requirements to comply with the constraints and 

requirements in civil engineering. 

1. Introduction 

Modern and digital planning approaches using the Building Information Modelling (BIM) 

method incorporate 3D-based and semantic enriched building models. These models have a 

great potential to undergo automatic checking procedures, such as for checking regulatory 

requirements from building codes, but also to validate individual semantic and geometric 

requirements expected by the contractor. Therefore, software on the market provides functions 

to check information requirements and to apply complex and geometric checks on models, 

which can rapidly increase the model quality. However, these rules are stored in a proprietary 

and not humanly readable format. Moreover, when the need for adjustments of individual 

rulesets arises, it is often necessary to use programming interfaces. To make exchange and 

automatic checking of regulatory requirements work in a sustainable manner, an open and easy-

to-use data format is required.  

The standardization in terms of defining and validating models is greatly advancing. The latest 

standard, the Level of information need (LOIN) (DIN, 2021) allows to describe BIM 

requirements in a standardized way, including level of information (LOI), level of geometry 

(LOG) and documentation (DOC). Some of these requirements are directly interdependent and 

rely on each other across norms and regulations. Basic constraints can be provided in a technical 

language, from which concrete rules can be derived in a conditional notation ("if..., then..."). A 

specification is applied to a BIM model by translating the textual form of the requirements into 

a collection of explicit properties and property sets that specify terms, values, and definitions 

for specific elements within the model, or by creating geometric representations constrained by 

specific criteria such as position or dimensions of the elements. However, specific terms with 
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the same terminology can have different meaning in specific contexts and lead to different 

implications. They cannot be applied directly to a BIM model. The reason for this is that the 

regulatory and administrative formulation of the technical requirements provide a lot of 

freedom for interpretation. That can be solved by creating individual modelling guidelines to 

supplement the original documents and prepare the verbalization for technical implementation 

on the model. A modelling guideline contain specific use-case related property set definitions 

for specific model elements. Also, requirements to the geometric representation can be defined, 

such a as a specific LOG. 

To exchange BIM models in an open and standardized format, the Industry Foundation Classes 

(IFC) are used. In this format the LOI is realized as element properties and the LOG refers to 

the assigned geometric representation. That allows to have a holistic model with clearly defined 

semantic parts and geometry information as a basis for an integrated data exchange. Because 

the information delivery depends on user requirements, a conformity check of the BIM model 

is necessary, which can be performed with code compliance checking. 

Depending on the complexity and profundity of applicable requirements, variants of rules and 

rulesets for code compliance checking can be defined. A requirement can be called complex if 

it includes the necessity of interpretation of specific information, such as concluding if a certain 

geometry is classified on a specific LOG. The profundity is referring to the depths of entangled 

information that either build upon each other or must be processed in junction, such as 

determining the building classification first to calculate requirements for fire resistance 

properties. Common code compliance checking methods struggle to allow these depths of 

interconnected requirements and their interpretations to be systematically processed. 

When executing code compliance checking, two checking stages can be derived. On the one 

hand, a formal rule checking is performed, which validates the LOI against the definitions from 

a modelling guideline if required properties exist and have admissible values and data types. 

On the other hand, a technical rule checking is performed, including the investigation of 

sophisticated model relations, and using geometric operations to calculate complex measures. 

To define formal model rules, the Model View Definitions (MVD) allow to define explicit 

requirements to a specific filtered entity in IFC models. However, MVD turned out to be very 

complex to implement and, therefore, to be not well accepted. Consequently, the Information 

Delivery Specification (IDS) has been developed by buildingSMART International to provide 

a simpler data format, which currently is in pre-standardization phase and already is becoming 

implemented by many software vendors. 

In terms of technical rule checking, the need for an open format for a more simplistic and 

methodical approach to check technical requirements. Solving the technical requirements of 

norms and regulations by machine-readable rules is a necessary consequence in the 

implementation of the BIM method to enable a simpler exchange of regulatory requirements. 

This includes the processing of model geometries or the creation and calculation of additional 

geometric annotations (e.g. showing escape routes or measuring areas). Currently, that can only 

be partly realised by adopting and combining predefined rulesets in existing rule checking 

software. The user can create custom rule checking logic by interacting and changing 

parameters in the development interfaces but still depends on a black-boxed checking 

procedure. The use of proprietary systems can impose difficulties on users, such as limiting 

software interoperability and creating requirements that cannot be exchanged. 

To deliver an open and standardizable format, this paper proposes the OpenBIM Rule Language 

(abbr. OpenBIMRL), an XML-based open data structure for defining technical requirements 
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and performing automated code compliance checking on IFC models. It provides a framework, 

to investigate BIM models by code compliance checking and pre-calculation on the models 

provided information, such as extract and calculate intermediate results, and subsequently 

solving the overall requirement applying propositional logic. Pre-calculations are defined by 

using a Visual Programming approach. The graph-based formalization allows users to define 

model-based workflows consisting of complex calculations and functional subflows. The 

generated results are resolved and terminated by a concatenation of logical operators. This 

enables a straightforward and clear arranged understanding and sustainable digitalisation of 

complex of regulations. In this paper, the applicability is demonstrated and evaluated on two 

examples from the German Template building code. 

2. Related Research 

Rule languages provide the ability to formalize requirements to a BIM-based model, which can 

be then automatically checked. However, the available languages and formats do not equally 

cover all the criteria that are considered required for practical implementation and application 

of rule checking. Therefore, Solihin et al. (2019) proposed eleven distinct criteria. Those criteria 

contain classifications, e.g. for the availability of a standards schema, language expressiveness, 

the ease of defining rules or the support of complex rules. Furthermore, several studies 

introduce types of checks by distinguishing and dividing between approaches (Ismail et al., 

2017; Solihin and Eastman, 2015). Those are crediting the increasing complexity and solution 

orientation of rule checking approaches as a key driver for this distinction. In general, rule-

checking techniques can be divided into multiple categories, such as coded rule-checking, rule-

checking by querying and dedicated rule languages, with researchers comparing strengths and 

weaknesses (Pauwels and Zhang, 2015). No clear favourite could be identified from the 

research, as this depends mainly on the user's preferences and use case, but there is a clear trend 

towards dedicated rule languages, which tend to present the most flexible of solutions. To 

enable open exchange of rules, it is necessary to utilize the potentials of open formats and 

standards.  

For the definition of formal rule checks on IFC models, some open formats are used in state-

of-the-art approaches (Jaud and Muhič, 2022; Olsson et al., 2018). The Model View Definitions 

(MVD) (Liebich et al., 2021) and the upcoming Information Delivery Specification (IDS) 

(buildingSMART Technical, 2022; van Berlo et al., 2019) present approaches to query and 

check IFC-based models. In particular, IDS has been identified as an enabler for checking 

requirements in future developments of upcoming releases of IFC (Berlo et al., 2021).  

For the definition of technical rule checks, numerous approaches have been proposed. First, 

BIMQL (Mazairac and Beetz, 2013) is a query language that specializes in IFC model data and 

can formalize rules in a syntax similar to SQL. Second, GraphQL can formalize descriptive 

paths within a database as JSON-based queries, which can be used to resolve linked building 

data sets (Hartig and Pérez, 2018; Werbrouck et al., 2019). Also, a whole portfolio of 

technologies are available under the RuleML terminology (Boley et al., 2010) for querying and 

validating XML-based data sets. These are only conceptual query languages that also require a 

programming-like formalization of specifications. Another approach is the use of graph-based 

data structures, which provide more freedom to represent complex data. 

The Semantic Web technologies are presenting such a graph-based structure, on which code 

compliance checking can be performed, using the SPARQL Query Language for RDF 

(SPARQL, 2018) and Shapes Constraint Language (SHACL, 2018). These technologies cannot 
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handle BIM-based models directly and require a conversion to the Resource Description 

Framework (RDF), an XML-based data store consisting of triples in the form of subject-

predicate-object expressions (RDF 1.1 Concepts and Abstract Syntax, 2018). An RDF structure 

can be formalized by utilizing the Web-Ontology Language (OWL) (Bechhofer et al., 2004), a 

data model serving as a descriptor for RDF data. Yurchyshyna and Zarli presented an ontology-

based method for the formalisation and application of construction conformance requirements 

for effective code checking by utilizing sematic web technologies (Yurchyshyna and Zarli, 

2009) and Beach et al. presented a semantic framework to automatically check regulatory 

compliance (Beach et al., 2015). Using semantic Web Technologies for BIM-based rule 

checking, however, provide some challenges. When converting to RDF, large data sizes are 

produced and very complicated substructures are created. Thus, some research focuses on 

implementing shortcuts functions, such as realized in BIMSPARQL (Zhang et al., 2018). Also, 

replacement of certain IFC elements into alternative representations are performed. Such is the 

case for geometries, which can partially be replaced by Well-Known Text (WKT) 

representations (Guo et al., 2021; O’Donovan et al., 2019; Pauwels et al., 2017). Regardless of 

these challenges, the use of semantic web technologies is the most discussed approach for 

implementation of code compliance checking.  

Instead of considering a generalised approach by using semantic web technologies, in research 

the idea of using a graph-based rules for specifically checking building code had already been 

conceived. The KBimCode approach (Kim et al., 2019; Song et al., 2019) introduces the KBVL 

(KBim Visual Language), a graph based rule checking tool that evaluated the approach for the 

Koran building code. The KBVL definitions are translated to script that formalizes the graph 

by a set of conditions. The rules are subsequently executed by a scripting language that operates 

in combination to the KBVL.   

In addition to being graph based, the Visual Code Checking Language (VCCL) (Preidel, 2020; 

Preidel and Borrmann, 2015; Preidel and Borrmann, 2016) demonstrates that a visual-driven 

rule language can allow for a more simpler definition of technical requirements. The VCCL is 

designed to perform Automated Code Compliance Checking (ACCC) explicitly for the formal 

description of checking for conformance against norm and building codes, i.e. for checking 

formal requirements. Individual nodes in a VCCL rule check represent atomic functions, which 

also recognizes the possibility that more complex requirements can be checked and still be 

presented in a way that is understandable to the user. This is enabled, for example, through the 

implementation of geometry operators. The VCCL is the closest concept for open rule-based 

compliance checking of requirements from norm and regulations.  

3. Methodology  

The methodology is based on a clear distinction between the checking of formal and technical 

requirements. Both require different approaches for implementation and checking of rules. This 

paper focuses on checking technical requirements, however, checking the formal requirements 

is considered as a prerequisite. This separation, in formal and technical rule checking, is a 

fundamental idea behind the framework that enables technical requirements to be checked.  

The framework is divided into four sequential steps (Figure 1), with data handover processes 

located between those steps. This data contains filtered elements and reports to rule checks. The 

first step is part of the pre-calculation, which performs graph-based computations of complex 

algorithms using model data as parametric input. It incorporates functions, such as element 

filters and mathematical operators as well as the creation of temporary helper-geometries (e.g. 

polygons of required areas).  
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Figure 1 Framework of creating a format for checking technical requirements 

This part of the framework (the pre-calculation) is similar to the VCCL and KBVL concepts 

previously introduced. In fact, in can be argued that this step is interchangeable with those and 

similar approaches. The generalised and open nature of the OpenBIMRL graph-schema allows 

for approaches like VCCL and KBVL to be represented and mapped on data structure, be it by 

class inheritance, by name and type classification or schema alignment. However, a complete 

rule check should conclude with a clear statement (true/success or false/failure), a necessary 

step that must follows up the pre-calculation. Therefore, in OpenBIMRL, results of the pre-

calculation are linked and resolved by a rule checking interface. 

Specifically, the results of this pre-calculation are favourable data structures, such as lists and 

single values, that are then marked as rule identifiers, to be accessed in the subsequent checking 

procedure. That ensures a systematic transfer of model data into a holistic rule checking 

approach. The rule checking itself consists of nested rules (e.g. sub checks), which helps 

resolving dependencies between sets of information and to conclude results into an overall 

statement. A statement is either true or false depending on whether the rules could be verified. 

Finally, these results (e.g. result sets) can be interpreted as rule checking reports that are 

reflecting the state of information provided in the BIM model. These results then enable a 

visualization of affected model elements. 

 

Figure 2 Overview of the OpenBIMRL data schema as UML class diagram, showing related structures for graph pre-

calculations (blue), rule checking (yellow) and the retrieval of result sets (red) 
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As the data model of the methodology, the OpenBIM Rule Language (OpenBIMRL) is 

introduced, an open format implementation of the described framework (Figure 2). The format 

is a solution for the current need of defining technical requirements for IFC based models in an 

open format. The language uses a directed graph-based approach for defining sets of rules, so 

that arbitrary functions can be linked as components and can be subsequently executed in a 

cascaded manner to retrieve geometric and semantic model information. The schema contains 

templates for defining generic functions (nodes) that are required to be implemented by rule 

checking applications to solve the specifics of the ruleset. Therefore, rulesets can be defined 

completely independent from any software implementation. 

The pre-calculation graph consists of three distinct types of node components, which are 

required for creating technical requirements.  

1. Function Component, which are nodes that perform specific operations on incoming 

data. Each NodeType element defines a function component. 

2. Identifier Component, which serves as a placeholder that transfer data from the graph-

based calculation to the rule checking. These are referenced by RuleIdentifierTypes. 

3. Input Component, which are nodes that allow direct data input, such as texts or numbers. 

These are designed to allow user interaction and are a special case of function 

components, therefore, also defined using NodeType elements. 

All nodes are connected by edges forming a directed acyclic graph (Figure 3). The edges 

represent the dataflow between nodes. An edge connects a specific output of a node (source) 

with an input of another node (target). Depending on the functionality, specific in- or output 

can be left open, meaning they are either optional or assumed to be default a certain value. The 

number of in- and outputs, their labels, the function name and namespace are essentially the 

signature of the node, which alone serves to distinguish between different implementations of 

certain functions. In addition, the nodes are provided with a unique identifier (e.g., a Universally 

Unique Identifier, UUID) that enables explicit identification and tracking of the implemented 

functional nodes. Standardization and unification of these functions will reinforce the reliability 

of the implemented rules in all applications that use the format.  

 

 

Figure 3 A visual example of the component graph performing complex calculation prior to rule checking, presenting input 

components (yellow), function components (blue) and identifier components (red) 
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Depending on the requirement to be checked, a complete graph can quickly reach high 

complexity. However, node clustering and nested graph execution can help structuring the rule 

checking and mitigating the rising complexity.  

The results of the individual function nodes can be stored in identifier components, which can 

be directly accessed from sub-checks of the rule checking structure (Figure 4). In OpenBIMRL, 

a sub-check is defined as a nested collection of ruleset and rule. A ruleset requires an operator 

to solve the nested requirements. A singular rule additionally requires a quantifier, describing 

the strategy in case a list of values will be iterated upon. Such a singular rule is based on a 

constraint or requirement formalized in norms and regulations. 

The labels of identifier components are used as operands in a rule, binding the stored result to 

the rule left- or right-side operand. Each check is concluded with a statement (true or false), 

concluding the whole collection of rulesets and rules in a sub-check. Multiple sub-checks can 

be defined and processed simultaneously if a defined applicability allows for variants of 

approaches and alternative solutions. 

 

 

Figure 4 Defining the rule checking on precalculated results, as formal decision tree (left) and implemented data structure 

form in OpenBIMRL (right)  

4. Case Study 

To demonstrate the applicability of the proposed approach, two cases from the German 

Template building code (abbr. in German as MBO) were implemented. These are the checks of 

the building classification (MBO §2) and the escape routes (MBO §33). However, the 

OpenBIMRL approach is not limited to check requirements of the BIM domain, but also allows 

for integration of GIS specific constraint. Additional domains can simply be addressed by 

considering specialised node libraries, that handle the multi-model integration. 

The implementation itself contains of a creator-tool, which provides visual web-environment 

that enables the drag and drop creation of the graph and rulesets defining an OpenBIMRL 

document. The modelling of those graphs using such a visual modelling tool helps reviewing 

the rule checking results and provides visual feedback. Interacting with such an editor is an 

essential part of the user experience while creating or deriving technical requirements into rules. 

Secondly, an engine contains a set of implemented function nodes and enables the execution of 

the OpenBIMRL document against an IFC model. As a prerequisite, the conducted BIM models 

are expected to have already passed a preliminary formal check. 
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4.1 Checking the Building Classification 

The MBO comprehensively relies on the building classification information defined in §2. Most 

of the relevant model requirements are related to the building classification, such as permissible 

values for fire resistance properties of building elements. The MBO distinguishes between five 

building classifications, which each requires a specific building height, maximum gross areas 

and maximum counts of building units. Additionally, information about the location and 

environment are also required to specific classifications. If the values comply with defined 

thresholds, a building classification can be determined, which is used to further investigate the 

provided properties in the model. 

The calculation that needs to be performed requires the filtering of model elements and the 

examining of geometries. Initially, the gross areas are solved grouped by the individual building 

units and types. Then the required building height is measured starting from the average surface 

height of terrain model and the finish floor hight of the highest level of human stay. Finally, 

functions for counting, sorting, splitting and joining lists of elements are necessary to process 

the calculations to determine the data for the subsequent rule checking.  

The pre-calculation graph can quickly reach a high level of complexity for such a technical 

requirement. However, the graph can be divided into functional routines, each of which solves 

parts of the prerequisites for the rule check. For example, the sub-routine that solves the 

calculation of the building height requires a combination of addition-, subtraction-, filterBy- 

and get-functions components (Figure 5). The resulting building height is compared against the 

requirements of the building code to find the valid building classification. Those requirements 

can, for example, be formalised using a Nassi-Shneiderman diagram and then can be translated 

into OpenBIMRL compliant rules (Figure 6).  

 

Figure 5 OpenBIMRL sub-routine for calculating the building height based on an average surface height and finish floor height  

 
Figure 6 Checking the building classification in OpenBIMRL, exemplified by the process of the rule checking framework. The 

processed IFC model (left) results into a set of input values (middle) that are required for rule checking (right). 
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4.2  Escape Route Check 

The second example are the escape routes defined in MBO §33. It describes that the first and 

second escape routes are dependent on the exits and room constellation of a storey. Specifically, 

an escape route must start at the farthest corner within a building unit (e.g. an apartment) that 

considers human stay. The first escape route either must end to a door leading out of the building 

or to a door leading into a save area, such as a main stairwell. Second escape routes, however, 

can also end to a ladder able window that is accessible by firefighters. Furthermore, the lengths 

of these routes are restricted to a maximal allowed length of 35 meters.  

For the application of this technical requirement, several geometric dependencies must be 

solved. For example, an escape route is planned by going around wall-corners and through 

doors. Some elements and room-objects must be attributed with properties that mark them as 

endpoints, obstacles or relevancy to pass through. Accordingly, a set of filter operation will be 

required to find these elements and their data. Since the possibilities for calculating escape 

routes allow for various approaches, in this case, a graph-theoretical approach has been 

performed. Therefore, a network of positions and paths is created across an entire storey to 

determine possible routes. The focus of the rule checking, then, is to verify the lengths of routes.  

To find escape routes, the essential sub-routine is the creation of a graph-based network that is 

the basis for the application of a path search algorithm, which in this case, the A*-algorithm for 

shortest paths in a non-directed graph is used. This sub-routine requires a set of geometries to 

be processed, such as the representations of IfcSpaces and IfcDoors to create the points of the 

network and of IfcWalls to filter and remove intersecting paths (e.g. edges as line geometry). 

These geometric dependencies are solved by primarily utilizing a checkLinecasts-function node 

on the created and collected edges against the IfcWall-entities, solving the intersection between 

geometries and removing all edges which lead into a wall structure. Several collection function 

nodes, such as flattenCollection and joinCollection, are then utilized to prepare and sort 

function node results. A visual representation of the network, on top of calculated distances 

between points, is visualized in Figure 7. The precision of results, specifically of the calculated 

distances and found paths, is dependent on the parametrics of the graph-based network, which 

can be manipulated to align for optimal constraints (e.g. see textInput-nodes in ). This way, the 

flexibility afforded by the norms and regulations is integrated into the rules giving the user the 

freedom to adjust certain variables. 

 

Figure 7 The created network of positions and paths, with filtered out wall structures. Marking distances as far (in red) and 

near (in green) towards a potential escape through the door leading into a stairwell. 



10 

 

 

Figure 8 OpenBIMRL sub-routine to create the network for finding potential escape routes that will be further processed in 

the rule checking. 

5. Conclusion 

Because of the need for an open and transparent exchange of information, methods for a semi-

automated checking of building data are becoming essential. The examination of formal 

requirements is already handled and standardized by several technologies and formats, such as 

the Model View Definitions (MVD) and the upcoming Information Delivery Specification 

(IDS). However, current technologies and formats either do not sufficiently support the 

validation of technical requirements, or their formalization requires explicit programming 

skills. In addition, potential rule languages must translate BIM-based models and documents 

into compliant data structures for the implementation of technical requirements. This is a time-

consuming and mostly error-prone process, which can be mitigated by directly incorporating 

IFC-based data into the rule checking process, such as performed in the formal rule checking. 

Building on a conceptualized framework and the distinction between formal and technical rule 

checking, this paper proposes the open format OpenBIMRL. This format allows formalizing 

technical requirements, by processing model dependencies using functional nodes in a graph-

based structure. The resulting insights lead to decisive statements on the quality of information 

delivery. OpenBIMRL simplifies the rule definition approach of rather complex requirements 

by systematically utilizing the advantages of visual programming (e.g. Graph to Model 

Execution), providing an easier entry barrier for BIM users. Furthermore, the OpenBIMRL 

format is generalised in such a way, that known concepts for graph-based rule checking can 

easily adapt the data model, aiming to create a basis for code compliance checking going 

forward. The interpretation of terminologies and requirements in norms and regulations is 

resolved, by processing the results of those graph-based calculations in an examination similar 

to formal rule checking approaches.  

The method is currently only evaluated on the German building code. Consequently, 

formalising any type of construction rule and regulation to be applied on BIM models require 

large scale in-depth formalisation of rules from all kinds of regulations.  In future developments, 

standardization of individual components can help to implement a distinct rule language and 

formalization of the technical requirements. The understanding of complex correlations in the 

model can be greatly improved, if fundamental functions are defined and utilized for 

computation that are able to systematically validate dependent technical requirements. To 

enable the transition to a full rule language, the OpenBIMRL data model must be challenged 

against more and diverse sets of requirements. Their formalisations will help shaping the 

languages specifics.  
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