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Abstract. Construction planning and scheduling is complex due to frequent deviations from the 

initial schedule. Since the internal sequences are similar across projects and production activities are 

repetitive, ongoing projects offers valuable opportunities for continuous learning and improvement. 

This paper proposes an adaptable discrete event simulation tool for prefabricated column mounting 

work processes, based on a discrete event system specification formalism for modelling the system, 

to support decision-making during project management. By using data-based input parameters in 

the form of productivity density functions for activity durations, the tool facilitates ongoing 

construction management. The tool enables testing of different construction options and what-if 

scenarios by modifying resource allocations and delivery options. The tool simulates a multitude of 

construction possibilities stochastically and forecasts productivity, resource-efficiency, and safety-

related key performance indicators. This provides project managers with a solid foundation for 

taking control actions and enables straightforward data-based construction management. 

1. Introduction 

Despite comprehensive planning and scheduling efforts before construction starts, the 

production process often deviates from the initial plans, entailing unproductive, resource-

inefficient (Teicholz 2013; ECSO 2021), and hazardous working conditions (Eurostat 2022). 

These challenges arise due to unique products being built by varying teams under different site, 

regulatory, and external conditions. While internal procedures and logics are similar across 

construction projects, external circumstances, which are inevitable and uncontrollable, 

distinguish each project (Teicholz 2013; Behzadan et al. 2015). Therefore, the construction 

sector is increasingly using prefabricated components to standardise production processes, with 

a predicted 30% increase in prefabricated buildings in the European market from 2020 to 2026 

(Research and Markets 2021). Prefabricated components are manufactured in factories and 

delivered to construction site for mounting, leading to benefits such as reduction of storage 

space on site, less waste, and safer working conditions (Lu et al. 2018). However, construction 

by prefabricated components requires increased planning efforts before and during construction 

to ensure a smooth operation. Delayed material deliveries entail idle time for the resources, 

while early deliveries can lead to congestion on site (Zhong et al. 2017). Ongoing projects 

present valuable opportunities for continuous learning and improvement due to the repetitive 

nature of production activities. Currently, weekly planning meetings are held to discuss 

completed works and intervene if necessary, but participants rely on subjective opinions and 

traditional problem-solving methods (Abdelmegid et al. 2020; Hartmann 2021). However, 

reliable and timely information is needed for successful construction management, especially 

when using prefabricated components (Zhong et al. 2017). 

To overcome the lack of relevant, up-to-date information, the concept of digital twins has 

attracted attention in the construction sector. During the construction phase, the digital twin 

concept aims to collect real-time process data to derive meaningful project status information 

using artificial intelligence. This project status information can be used to continuously update 

a digital model, the digital twin. Before implementing digital twins, it is essential to determine 
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the specific purpose for collecting data and using the gained information, e.g. to manage 

ongoing construction processes (Brilakis et al. 2019; Sacks et al. 2020; Jiang et al. 2021). 

Despite its potential benefits, the digital twin concept has been rarely applied during the 

construction phase so far (Sacks et al. 2020; Deng et al. 2021) due to the dynamic nature of 

production on large-scale sites, which poses significant implementation challenges. To enable 

data-driven decision-making during construction in a timely manner, the major challenge is to 

establish methods and systems that can integrate field data into project management (Behzadan 

et al. 2015). Modelling and simulation is an effective method to support construction 

management (Leite et al. 2016). Discrete event simulation (DES) is particularly suitable for 

handling the operational interactions of complex construction processes (Martinez 2010). 

Implementing DES in construction management faces two major challenges: the need for 

reliable input parameters and the laborious process of developing DES models (Behzadan et al. 

2015; Abbasi et al. 2020; Abdelmegid et al. 2020; Rashid and Louis 2022). Thus far, rather 

static DES models have been created, which rely on generic assumptions from before the start 

and are incapable of being used during construction. In a previous paper (Jungmann et al. 2022), 

the authors presented a procedure to collect real-time data during crane operations and analyse 

them using machine learning classifiers to extract action durations. Next, suitable probability 

distribution functions (PDFs) were determined to consider construction dynamics and perform 

a data-based DES model calibration. As it is of utmost importance to use process information 

gained for construction management, adaptable DES models that can consume dynamic input 

parameters according to current site conditions are required. This will enable more reliable 

forecasts and data-based decision-making (Wu and AbouRizk 2021). The proactive 

management of construction processes by the digital twin concept in consideration of lean 

construction principles is called digital twin construction (Sacks et al. 2020). 

This paper presents the development of an adaptable DES tool based on a created Discrete 

Event System Specification (DEVS) formalism for proactive and timely management of 

prefabricated columns mounting. The tool requires several inputs, including data-based PDFs 

for activity durations, and generates key performance indicators (KPIs) related to productivity, 

resource-efficiency, and safety as outputs. Thus, the stochastic simulations offer valuable 

forecasts to enable meaningful decision-making in a straightforward way. The tool’s 

applicability was tested on a demonstration site to compare the impacts of different construction 

options by changing resource allocations and delivery scenarios. The paper is structured as 

follows: Chapter 2 provides an explanation of the topics DEVS and DES. Next, section 3 

describes the developed DES tool, followed by the presentation of the real-world demonstration 

site in section 4. To provide evidence for the tool’s value, it was applied to manage ongoing 

construction works in section 5. To conclude, section 6 outlines contributions, limitations, and 

future research fields. 

2. Theoretical Background 

At the beginning of each modelling and simulation application in construction, it is essential to 

acquire knowledge about the logic and sequences of the system’s processes (AbouRizk et al. 

2011). These findings have to be reported in a formalism that defines the system’s semantics 

and supports a conceptual understanding of its complexities (Zeigler et al. 2018). In a 

formalism, the blocks of a system’s model are described mathematically. For DES, the 

formalism aims to identify critical state variables that have to be adapted because of deviations 

from previous assumptions and, thus, facilitates decision-making (Behzhadan et al. 2015). 

DEVS is a widely used and powerful formalism invented and refined by Zeigler et al. (2018). 

In their review, Behzadan et al (2015) investigated underlying challenges associated with model 
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development and data integration to lay the foundation for future research and implementation 

efforts in real-time construction simulation. They presented details about DEVS for 

construction operations and developed a DEVS formalism for earthmoving operations to 

facilitate decision-making. In general, DEVS can consist of atomic and coupled models. 

Coupled models explain the whole structure of a system, including the connection of different 

(atomic) submodels, and describe the input-output relations. Figure 1 displays an exemplary 

depiction of the semantics of coupled models (Zeigler et al. 2018).  External input couplings 

(EIC) are the external inputs for the DES model, while external output couplings (EOC) are the 

outputs. Different basic models (𝑀𝑑 = 𝐴1, 𝐴2, 𝐴3), which can be atomic or coupled, are 

connected by internal couplings (IC), while the output of the previous model serves as the input 

for the succeeding model. Additionally, 𝑋 is defined as the set of input events for the simulation, 

while 𝑌 is defined as the set of output events. 

 

Figure 1: Coupled DEVS model 

DES enables the mimicking of the processes of real-world systems in a virtual environment and 

offers a cost-effective and risk-free technique to test different management decisions regarding 

complex problems (Wainer 2009). A DES model consists of a list of interrelated events that 

consider the interaction of entities, the system’s objects of interest. According to the occurrence 

of discrete events, the system’s state variables change. DES is particularly suitable for 

managing construction works by dividing the schedule into discrete processes (AbouRizk 2010) 

and testing different options, such as changing the number of resources. Stochastic DES enables 

to simulate real-life construction works by considering dynamics and uncertainties (Liu et al. 

2015a).  

In recent years, research has tended to use building information modelling (BIM) as an 

information base for DES. König et al. (2012) developed a concept to store interdependencies 

between activities in the BIM model to enable DES. Lu and Olofsson (2014) created an 

integrated framework that allows the DES model to respond to product modifications by 

directly incorporating changes made to the BIM model. Liu et al. (2015b) presented a BIM-

based integrated scheduling approach for panelled wall construction under resource constraints. 

Abbasi et al. (2020) utilised BIM-based information to estimate the cycle time of construction 

processes and used this information to optimise just-in-time delivery through DES. However, 

these approaches consider product-centric changes, but not process-centric. Simulations based 

on generic process-related assumptions made prior to construction are inadequate for 

consistently managing production effectively. Processes will unavoidably differ and, therefore, 

these approaches are only valid prior to the start of construction. Moreover, in the initial 

planning, an inadequate allocation of resources is stated regularly, which entails adverse 

impacts on the execution (Abbasi et al. 2020). Continuous updating of simulations is not yet 

done in the construction domain, which impedes successful management (Behzadan et al. 

2015). Akhavian and Behzadan (2013) showed the importance of data-driven DES, which 
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entails more accurate results. Rashid and Louis (2022) combined data-based process mining 

with DES to forecast performance during earthmoving operations. 

Although data-based DES has been demonstrated to enhance forecasting accuracy, there is 

currently a shortage of comprehensive management tools that can effectively integrate up-to-

date process data. Most of the existing DES research is static and it is impossible to modify the 

simulation. Given the significant effort of skilled experts, invested time, and associated costs 

required to create a DES model, current approaches are uneconomical, as these models can only 

be used during the early planning stages, but cannot be efficiently integrated with deviations 

during later stages (AbouRizk 2010). Dynamic DES models are required, which can be adapted 

according to current site conditions in a timely manner. Due to the possibility of collecting and 

analysing real-time data efficiently by artificial intelligence nowadays, reliable information can 

be provided in a timely manner to facilitate meaningful decision-making (Alvanchi et al. 2021; 

Rashid and Louis 2022). There is a lack of research in data-driven simulation for managing 

ongoing construction through the use of forecasted KPIs. Thereby, it is essential to compare the 

impacts of different options with different resource allocations and delivery options under 

uncertainties, such as weather forecasts, and to consider lean construction principles, such as 

just-in-time delivery, to support the decision-making process with data-based information. 

3. DES Tool 

The DES tool was developed using R to simulate the work process pattern of prefabricated 

columns mounting, as shown in Figure 2. The related DESV for the construction work process 

pattern is defined by equation 1: 

𝑀𝑃𝐶 = < 𝑋, 𝑌, 𝐷, 𝑀𝑀𝑃𝐶 ∣ 𝑑 ∈ 𝐷, 𝐸𝐼𝐶, 𝐸𝑂𝐶, 𝐼𝐶, 𝑠𝑒𝑙𝑒𝑐𝑡 > (1) 

X = {Column ID}; 

Y = {Column ID}; 

D = {Truck drive, Mounting} 

𝑀𝑀𝑃𝐶  = {𝑀𝑇𝑟𝑢𝑐𝑘 𝑑𝑟𝑖𝑣𝑒 , 𝑀𝑀𝑜𝑢𝑛𝑡𝑖𝑛𝑔}  

EIC ⊆ { ((Truck start, out), (Truck drive, in)); ((Traffic, out), (Truck drive, in)); ((Weather, 

out), (Mounting, in))} 

EOC ⊆ { ((Mounting, out), (Self, out))} 

IC ⊆ { ((Truck drive, out), (Mounting, in))} 

select = {Truck drive, Mounting} 

At a certain interval, trucks start to deliver a stated number of columns, which may be delayed 

due to traffic conditions. For each column, a unique ID is created as an input event according 

to the DEVS formalism. When a truck arrives at the construction site, the availability of 

location, mobile crane, and workers is necessary for mounting the columns. If the required 

resources are already being seized for another activity, the truck has to wait in a queue. Once 

the resources come available, they are seized and the mounting process begins. Hence, the DES 

model involves two activities, the truck drive and the mounting, which are internally coupled. 

Adverse weather conditions can affect the mounting process, either leading to delays or 
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increased risks during production. The three EICs are the truck start, the traffic, and the weather. 

When a column was mounted an output event is generated for its ID and the next column carried 

by the truck can be mounted. When the truck is empty, it leaves and the resources are released 

for handling the next delivery. Once all columns have been mounted, the simulation ends. 

 

Figure 2: DES structures for mounting prefabricated columns 

The tool enables modelling and simulation of a multitude of different construction options. 

Therefore, different inputs are required (Table 1). The simulation inputs comprise of general 

information such as the total number of columns, delivery-related factors including the number 

of columns per delivery and the delivery interval, and the activity durations specified as PDFs 

for the delivery and the mounting activities. Additionally, the number, maximum number 

because of constraints, and costs of resources have to be defined in the model. The number of 

mobile cranes and workers must be adjusted, as cranes require workers for operation. One 

mobile crane requires three workers for the mounting of a column. Hourly weather forecasts 

can be incorporated as a table. Moreover, risky and maximum admitted wind speed are further 

required settings to determine when the operation becomes risky and when it should be stopped 

according to the provided weather forecasts. Thus, using the tool makes it possible to efficiently 

test different construction options by changing resource allocations or delivery scenarios. 
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Table 1: DES tool inputs. 

Input Characteristic Input Characteristic Input Characteristic 

Total columns Number 
Construction 

worker 
Number 

Weather forecast 
Table 

Columns per 

delivery 
Number 

Mobile crane 
Number 

Risky wind 

speed 
Number 

Delivery interval PDF/Number 
Maximum 

cranes 
Number 

Maximum wind 

speed 
Number 

Delivery  PDF Costs per worker Number   

Mounting PDF Costs per crane Number   

The DES tool calculates various productivity, resource-efficiency, and safety-related KPIs 

based on the inputs. These KPIs form a basis for the pending decision-making process during 

ongoing production. Stochastic simulations are enabled through the use of the Monte-Carlo 

method and for each KPI, the resulting median value is selected. The construction duration is 

simulated by the DES. The productivity rate is a crucial factor in evaluating project 

performance, calculated by dividing the output by the input. In the tool, the productivity rate is 

calculated by dividing the number of mounted columns by the product of the resource number 

and the construction duration for the cranes and the workers, respectively. The usage of heavy 

equipment, such as cranes, is inefficient during construction (Slaton et al. 2020). Therefore, the 

utilisation rate of cranes is an important KPI and is calculated by dividing the sum of the active 

crane usage time by the total duration. As the construction industry is the sector with the highest 

number of fatal and non-fatal accidents (Eurostat 2022) and especially cranes entail high risk 

operations due to lifting activities, a safety factor is calculated. The safety factor indicates the 

time cranes are used during risky wind according to weather forecast. This is the range from a 

risky to a maximum allowed wind speed. As costs are a decisive factor in construction 

management, the personnel costs are calculated by multiplying the construction duration in 

hours by the number of resources and the respective costs for the resources. 

4. Demonstration Site 

The demonstration site is an industrial building, which consists of two halls with a total floor 

area of almost 30,000 m² and is constructed mainly by prefabricated components on an open 

field in the centre of Germany. The prefabricated components are delivered by trucks and set 

on its respective position by a mobile crane and construction workers. This study focuses on 

the mounting of the 166 prefabricated columns. 

In the first two weeks, 96 columns were mounted to construct the first hall with a total duration 

of 1,440 minutes. During the production, a high-definition webcam gathered time-lapsed photos 

each ten minutes to derive the durations for each mounting process. The set of durations was 

used for stochastic productivity modelling as presented in Jungmann et al. (2022) to determine 

a suitable PDF for the mounting activity resulting in a Weibull distribution with the parameters 

(2.803, 16.904). As it was not possible to track the delivery trucks, the delivery durations were 

derived by checking google maps between 07:00 a.m. and 03:00 p.m. on weekdays. The 

distance from the warehouse to the construction site was around 70 kilometres and the analysis 

of the durations for the delivery activity resulted in a Logistic distribution containing the 

parameters (75.772, 1.230). 
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5. Application 

The calibrated DES tool was used to plan the upcoming mounting of further 70 columns for the 

construction of the second hall by using the detected and validated data-based PDFs as input 

parameters. According to a discussion with the project manager, the number of cranes was 

limited to two because of logistic reasons. Costs of 36.60 €/h (Eurostat 2021) were provided 

for the workers and 100 €/h for a mobile crane according to the project manager. Weather 

forecasts were implemented and the risky wind speed was set to 10 m/s and the maximum to 

20 m/s according to Jin et al. (2020). The further inputs distinguish between four different 

options as listed in Table 2.  The first two options provide only one mobile crane and three 

workers, while Option 3 and 4 consider two mobile cranes and six workers. Within Option 1, 

an hourly delivery of two columns is intended. Option 2 and 3 schedule four columns per 

delivery, but Option 3 considers a 90 minutes’ delivery interval. Within Option 4, eight columns 

are delivered every 60 minutes. 

Table 2:   Construction options. 

 Option 1 Option 2 Option 3 Option 4 

Columns per delivery 2 4 4 8 

Delivery interval [min] 60 60 90 60 

Number cranes 1 1 2 2 

Number worker 3 3 6 6 

Each option was modelled in the DES tool and the simulation was repeated 1,000 times, 

resulting in the listed KPIs in Table 3. Option 4 showed the lowest construction duration with 

626 minutes, as two mobile cranes were provided and eight columns were delivered each time. 

This duration was almost the half of that of Option 2 (1,155 minutes) and less than a third of 

Option 1 (2,146 minutes). Option 4 achieved the second highest productivity for cranes and the 

workers. Option 2 outperformed with 1.17 columns/working hour (wh) for the workers and 

3.50/wh for the crane, as only one mobile crane and the associated workers were used. This was 

an improvement of around 80% in comparison to Option 1.  

Table 3:   DES Results. 

KPIs Option 1 Option 2 Option 3 Option 4 

Duration [min] 2,146 1,155 1,632 626 

Productivity Worker [column/wh] 0.65 1.17 0.42 1.06 

Productivity Crane [column/wh] 1.94 3.50 1.25 3.18 

Utilisation rate Crane [%] 50.87 97.65 34.27 96.70 

Safety [min] 180 120 180 0 

Personnel costs [€] 7,553 4,196 11,749 4,616 

Option 3 resulted in the worst productivity, utilisation rate, and cost values due to a longer 

delivery interval of 90 minutes, resulting in significant idle time, although 2 cranes were 

provided. Option 2 and Option 4 had similar utilisation rates, just below 100%. The personnel 

costs for both options were close, but Option 2 had the lowest expenses of 4,196€, which is 

around 10% less than Option 4 and around 65% less than Option 3. As Option 4 finished faster 

than the other options, no risk time due to high wind occurred. For Option 2, a risky period of 
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120 minutes was calculated and for the remaining two options, 180 minutes were forecasted 

according to the entered weather forecasts. If a fast execution is requested, Option 4 is the best 

choice due to the lowest duration, low costs, high productivity, and high utilisation rates. 

However, Option 2 is even cheaper, achieving more productive and resource-efficient 

construction, while taking slightly more time. 

6. Conclusions 

This paper presented an adaptable DES tool for efficient management of ongoing construction 

works. The sequences during construction processes resemble, but due to varying external 

circumstances, the durations differ and generic assumptions hinder successful construction 

management. This is especially applicable for construction by prefabricated components. 

Nowadays, process data are increasingly being collected during construction using sensors, 

videos and other technologies, in line with the digital twin concept. Research analyse these 

collected data using artificial intelligence to extract meaningful process information. However, 

it is not only important to gain data-based information, but also to use the gained information 

effectively to manage ongoing production. The tool’s easy adaptability makes it a valuable 

method for optimising the production process in various construction projects. 

The developed DESV and the visualised structure of the DES facilitate understanding and usage 

of the tool by describing input-output relations of the real system. This helps users to investigate 

data interfaces and handle production deviations. The created DES tool for managing mounting 

prefabricated columns offers the possibility to provide meaningful KPIs based on stochastic 

simulations and consider deviations during project management. By forecasting productivity, 

resource-efficiency, and safety-related KPIs, project managers receive a solid foundation for 

taking control actions. Thus, data-based management of construction is enabled in a timely 

manner.  

Even though the real construction will differ from the data-driven forecasts made by the tool, 

the data-driven simulations provide more accurate forecasts compared to generic assumptions. 

In the application, different resource allocations and delivery scenarios were compared. The 

results show that significant different impacts are expected for each option. Option 4 requires 

less than one third of the duration of Option 1 and Option 2 entails almost one third of the costs 

of Option 3. The application on a demonstration site presents how the tool can offer valuable 

insights for facilitating the decision-making process and the potential of data-based 

management for improving production, but the final decision is up to skilled project managers.  

While the focus of this study was on mounting columns, the tool’s usage can be expanded in 

the future to include other types of prefabricated components for a more comprehensive 

approach. One limitation of this research is the usage of Google Maps information for the 

delivery durations since tracking the delivery trucks was impossible. In the future, the delivery 

times of trucks should be observed by a GPS tracker, as proposed by Vahdatikhaki and Hammad 

(2014). Additionally, continuous data collection would be expedient to investigate the gap 

between forecasted and real performance since productivity close to 100% is hypothetical. 

Moreover, the results’ visualisations would be of great benefit. The development of a dashboard 

that provides an overview of executed works, possible construction processes, and resulting 

KPIs would improve communication and strengthen confidence among stakeholders. 
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