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Abstract. Modular construction is generally considered to be a very efficient construction method. 

However, disruptions in production can negate the advantages of modular construction. Dynamic 

scheduling (DS) is the strategic handling of production disruptions where real-time events’ effects 

are mitigated by analyzing the state of the production system and automatically optimizing 

production planning. The prerequisite for DS is acquiring real-time data relevant to production 

planning. Thus, the digital capturing, evaluation, and provision of production-relevant data are 

needed. This paper develops a Digital Twin (DT) of a production system based on the Asset 

Administration Shell (AAS), known as the implementation of DT in Industry 4.0. The AAS of the 

production system serves as a virtual aggregation level for the relevant data. DS is implemented 

using a simulation-based scheduler. The presented approach is verified using a virtual production 

system for precast concrete modules as a proof of concept.  

1. Introduction 

Modular construction with precast concrete elements is characterized by time and cost 

efficiency. Precast concrete elements are produced independently of weather conditions and in 

technically and economically optimized sequences. Disruptions in precast concrete production 

are due to uncertainties related to their production processes, such as varying delivery dates, 

process times, or supply chain delays, and cause increased costs and time expenditures. This 

variability inherent in precast concrete production presents significant challenges in 

maintaining a fixed schedule that accounts for all relevant factors and constraints. 

Continuous monitoring and simulation of the production processes can be used to respond 

dynamically to disruptions with an optimized production sequence. Dynamic scheduling (DS) 

is the strategic handling of production disruptions where real-time effects of events are 

mitigated by analyzing the status and automatically optimizing production planning. The 

prerequisite for DS is acquiring real-time data relevant to the production planning states of the 

production environment. Thus, the digital acquisition, evaluation, and provision of production-

relevant data along the production process are needed. The availability of this data is also key 

to Industry 4.0 (I4.0), which refers to the digitization of production, in which actors in the 

production process, such as products, machines, and processes, are virtually mirrored and 

networked. In I4.0 production, actors can exchange data and information independently and 

self-controlled. The goal must therefore be to combine DS with the digital capturing of 

production-relevant data according to the I4.0 model to enable dynamic and self-adapting 

production of precast concrete modules. 

This paper develops a Digital Twin (DT) of a production system based on the Asset 

Administration Shell (AAS) concept, known as the DT’s technical implementation in I4.0. The 

AAS of the production system serves as a virtual aggregation level for the relevant data for DS. 

Although execution management is also an essential responsibility of the DT of a production 
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system, this work focuses on aggregating data for DS. In this work, DS is implemented using a 

simulation-based scheduler. The DS system is connected to the AAS of the production system 

through a service that queries data from the AAS. Communication with the DS framework is 

realized via its API. The presented approach is validated using a virtual production system for 

precast concrete modules consisting of parallel circulation systems as a proof of concept. This 

paper will answer the following research questions: How can data collected during production 

be used to optimize production scheduling? and How can a service for dynamic scheduling be 

integrated into an I4.0-based production system? 

2. State of the Art 

Although automation approaches are available for most precast concrete module production 

processes, efficiency still needs to improve in the precast concrete production industry. It is 

essential to digitize the production process for automation to improve efficiency. Reichenbach 

and Kromoser (2021) note that digitization approaches are needed to interconnect production 

processes along the value chain. As Cheng et al. (2023) suggest, the precast concrete industry 

has to transition from experience-based manual production to data-driven automation. In the 

manufacturing industry, the digital transformation toward data-driven production is referred to 

as I4.0. The term is a reference to the upcoming fourth industrial revolution, which will lead to 

a convergence of the physical and virtual worlds by integrating advanced technologies such as 

Artificial Intelligence (AI) and the Internet of Things (IoT) (Monostori et al., 2016). The main 

goal of I4.0 is to create smart factories that are more efficient, flexible, and responsive to market 

demands through interconnecting machines, devices, and systems, enabling communication 

and interaction with each other in real-time. Production systems can react flexibly to disruptions 

and failures as well as changes by the customer (Kagermann et al., 2013). Coupling the 

prefabrication of concrete modules with modern information and communication technology 

associated with I4.0 can significantly improve the efficiency and productivity of the 

construction industry (Klinc and Turk, 2019). A major disadvantage of precast concrete 

construction is its inflexibility in reacting to uncertainties and risks in project scheduling, 

causing delays in the overall construction schedule and impacting project timelines and budgets 

(Li et al., 2018). Optimization and simulation approaches have generally been shown to 

efficiently mitigate the detrimental effects caused by schedule risks (Qi et al., 2021).  

Scheduling the production of precast concrete components is a complex task that involves 

managing the stochastic nature of processing times during the production process. Recent 

studies have addressed this issue by considering parallel flow shops and uncertainties inherent 

in production processes (Ma et al., 2018). This area of research is now commonly referred to 

as prefabricated concrete component production scheduling (PCCPS), as coined by Du et al. 

(2021). Various approaches have been proposed for solving PCCPS problems, such as 

dispatching rules and genetic algorithms (Teymourifar et al., 2020). However, most research 

has focused on genetic algorithms. Dynamic scheduling has been introduced as a solution to 

mitigate process uncertainties in real-time. This concept is relevant for many manufacturing 

environments, as static schedules can become obsolete when an unforeseen event occurs on the 

shop floor  (Toro, 2021). Altaf et al. (2018) exploit the possibilities of IoT for scheduling and 

present an integrated planning and control system for panelized construction that enables real-

time monitoring and production scheduling through RFID-based data acquisition and 

simulation-based optimization. The proposed system uses the RANSAC data mining method 

and Discrete Event Simulation to simulate the production processing time at each workstation. 

However, the paper does not address the digital or virtual models needed to implement the 

framework presented. In construction, the established Building Information Modelling (BIM) 
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method is often used as a digital basis for linking and integrating other technologies (Wang et 

al., 2020). However, BIM lacks the semantic integration of sensor and IoT data as well as real-

time capability (Boje et al., 2020).  

In I4.0, the DT is a key concept for capturing and providing data along the value chain 

(Uhlemann et al., 2017). In construction, a DT is generally understood to be a digital model 

going beyond a building information model through the sensor and IoT data integration and 

enabling data exchange between the digital model and its physical counterpart via a data link 

(Boje et al., 2020). BIM and the DT, however, are not mutually exclusive but complementary 

and respond to different industry requirements (Davila Delgado and Oyedele, 2021). When 

implementing DTs, the construction industry is still at an early stage. Up to now, there have 

mainly been isolated solutions based on different architectures and not readily compatible with 

each other. In previous work (Kosse et al., 2023), we have proposed a modular approach based 

on information containers where data is captured use case-related and exchanged via 

standardized interfaces enabling a flexible implementation of DTs. We introduced the AAS 

from I4.0 and Information Container for Linked Document Delivery (ICDD) as examples. In 

addition, to support the automated production of precast concrete modules, we have proposed 

(Kosse et al., 2022) presented an AAS-based DT for precast concrete modules containing 

production-relevant data stored in submodels, each representing a closed view of one aspect or 

use case. Standardized interfaces enable seamless data access, and the DT can be extended 

throughout all phases of the module’s lifecycle. However, the paper is limited to the component 

level. The extension to the production system level and the use of data for data-based decision-

making have yet to be considered. Only a few works exist on the implementation of dynamic 

scheduling. Villalonga et al. (2021) propose a decision-making framework based on DTs for 

DS of cyber-physical production systems (CPPS). The framework includes a DT of the CPPS 

with a decision-making module that generates scheduling decisions based on real-time data 

from the DT and a control module that executes the scheduling decisions in the production 

system. While their approach cannot easily be applied to the scheduling of precast production, 

it offers a sound foundation. 

3. Conceptual Framework  

The following section presents a conceptual framework for optimizing precast concrete 

production by implementing a dynamic scheduling system based on the DT concept. The 

framework is designed around a service-oriented architecture, which utilizes a central service 

to facilitate data exchange between the DT and the optimization application (cp. Fig. 1). The 

aim is to enhance production scheduling for greater efficiency. The structure of the DT is 

described first, followed by a detailed explanation of the central service’s role in coordinating 

data exchange and optimization sequences. Finally, the dynamic scheduling approach for 

precast concrete modules is specified. 

Production systems comprise numerous complex components, including products, machines, 

and processes. In the I4.0 model, each component has a corresponding DT that collects and 

stores data and information about the asset. The locally captured production-relevant data must 

be aggregated into a hierarchical DT, allowing a holistic view of precast concrete module 

production. Production-relevant data is collected by DTs of products, machines, and processes 

at the lowest hierarchical level. At the highest level of the hierarchy, the DT of the production 

system offers an overview of the entire production process. It collects data from the individual 

DTs of the products, machines, and processes. It integrates them to create a complete picture of 
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the production system enabling real-time monitoring and control of the production process and 

the ability to make informed decisions based on the overall system performance. 

DTs are used to manage data and typically do not include built-in data analysis and evaluation 

capabilities. These capabilities must be implemented through external applications that interact 

and communicate with DTs for data and information exchange. Data exchange must be 

coordinated, and the optimization sequences must be controlled to enable dynamic scheduling. 

A service connects the DT of the production system and the optimization framework, querying 

the relevant data and converting it into the respective input format for the scheduling 

application. As the optimization process proceeds, the service provides feedback on the results 

of the optimization process to the DT of the production system. This feedback enables the 

production system to improve its schedule based on the optimization results continuously. 

The dynamic scheduling application is a crucial element of the presented approach as it 

generates information based on the input given by the service. The service application triggers 

each optimization sequence. New production schedules can be created in real-time based on 

changing conditions, such as the addition of new orders or unexpected delays resulting in 

improved efficiency, reduced wait times, and increased utilization of resources. 

DTs and external services for DS in precast concrete module production have several benefits. 

For example, it allows for real-time monitoring and analysis of production data, which can help 

identify inefficiencies and bottlenecks in the production process. This data can also be used to 

optimize the production process, enabling companies to increase efficiency, reduce costs, and 

improve quality. 

Figure 1: Schematic illustration of the concept for linking a scheduling application to a production 

system based on the I4.0 model to enable dynamic scheduling.  

4. Implementation 

This section presents the implementation of the conceptual framework. First, the AAS of I4.0 

is presented as the DT’s implementation (Plattform Industrie 4.0, 2020). Second, based on 

Sim4FJS, a dynamic scheduling application is implemented to optimize the production 

schedule (Schwemmer et al., 2020). Finally, a Python-based HTTP/REST web service is 

implemented to coordinate data exchange between the DT and the DS application. 
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4.1 DT of the production system 

The AAS is a modular information container consisting of various submodels representing 

different aspects or use cases. Together, the submodels form a DT by capturing all the relevant 

data and information for the corresponding use case. This information can be stored as literal 

values or references to external data sources. Each data point has a semantic ID and a concept 

description to ensure machine readability and unambiguous interpretability. The AAS provides 

data access interfaces, including HTTP/REST, OPC UA, or MQTT. In addition, a package 

format containing the referenced data and a serialization of the data model is available. The 

AAS can be hosted on a server as an actively communicating or passively reacting component.  

Figure 2: AAS of the production system: Submodel Production.  

The AAS of the production system consists of data and information on the production units and 

orders in the production system (cp. Fig. 2). A production unit corresponds to a circulation 

system, which consists of their respective production stations, such as a station for producing 

reinforcement. In the AAS of the production system, a reference to the corresponding AAS is 

stored for each production station, and the capacity and utilization of the storage in the feed of 

the production station are recorded. Production jobs are stored with a unique ID, due date, and 

modules included in the production job. Each module is classified into a module type, for which 

the production quantity, parameters, and assigned production unit are recorded. In addition, 

references to the corresponding module AASs are stored. Production parameters are recorded 

separately for each production station. They include the expected start time, duration of the 

production step, and actual start and end time. For each property, a concept description is 

included consisting of a semantic ID and a data specification according to IEC61360. The I4.0 

middleware, Eclipse BaSyx, hosts the AAS on a server. Eclipse BaSyx is an open-source 
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software platform for implementing I4.0 solutions providing tools and libraries for developing 

and integrating smart manufacturing systems that can connect to and interact with other systems 

and devices. 

4.2 Dynamic Scheduling Framework 

A production system made of parallel circulation systems can be classified as a parallel flow 

shop. However, since the heat treatment process takes significantly longer than other processes, 

parallel heat treatment stations are needed to achieve even utilization rates of the stations. This 

feature makes the circulation system a flexible flow shop (FJS). The simulation-based scheduler 

is implemented using Sim4FJS, an open-source Python framework for simulating flexible job 

shops built upon the discrete-event simulation framework Simpy. Since flow shops are a special 

case of job shops, Sim4FJS is well suited to model the production of precast concrete modules. 

However, circulation systems critically differ from job shops, consisting of chained stations 

with limited or no buffer between them. Since product carriers can only move to the next station 

after the previous carrier leaves the previous station, the simulation model is modified to 

consider these interconnections. This is achieved by implementing a strict linkage of the 

stations, e.g., a product can only leave a production station when its next station becomes 

available. In this configuration, buffers can be added by introducing process stations with a 

processing time of zero. This is performed by the service presented in section 4.3. The 

optimization goal of the scheduler is to minimize the total order tardiness metric, assuming 

that the tardiness cost is the same for all orders. A genetic algorithm (GA) provided by the 

geneticalgorithm framework is used to find the schedule minimizing that metric. The GA alters 

the sequence of jobs entering the production system, which is then handed to the simulation 

model. The model then simulates the resulting production processes, from which the total order 

tardiness is calculated and fed back to the GA, which adapts the given start sequence according 

to the previous input sequences and respective results. To enable the dynamic generation of 

simulation models, an HTTP/REST API accepts system state and order backlog information in 

YAML syntax to create a simulation model and optimize the schedule dynamically. The 

simulation model is generated from this input to compute an optimized production schedule. 

The API returns the expected order completion dates, the expected start times, and chosen 

stations for every process step according to the optimized schedule. The simulation-based 

scheduler is called Sim4BFT and can be hosted on a server to be accessed remotely over its 

API. 

4.3 Service 

A Python-based web service works as a mediator between the AAS, which stores relevant data 

about the production system, and the dynamic scheduling optimization framework, which 

optimizes the system’s operations in real-time, to optimize the production system’s operations 

efficiently. The service includes three steps: data querying, data conversion and input to the 

optimization framework, and conversion and transmission of optimized schedules to the DT 

(cp. Fig. 3). First, the web service queries the AAS using an HTTP/REST interface to retrieve 

the submodel elements ProdUnits and Orders as JSON files. Once the data is retrieved, the web 

service preprocesses and converts it into the correct input format for the optimization 

framework. The conversion involves modifying certain data types and structures, e.g., time and 

duration data, due dates, and process times are converted into unified simulation time units. 

Also, the sequence of production steps is extracted from the Orders submodel element 

collection and specified in the appropriate format for simulation using process stations and 

available buffers as part of the preprocessing. The input data is stored in the YAML syntax and 

transmitted via the optimization framework’s API. Once the input data is transmitted, the 
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optimization run is triggered with another API call. After completion of the optimization 

process, the optimized schedule is queried by the service and converted back into the 

appropriate format for the AAS. Finally, the production schedule is transmitted to the AAS via 

its HTTP/REST interface. The schedule data from the production system AAS is distributed 

over the actors in the production system, such as products, machines, and processes, which are 

all represented through AASs. However, this step is not the focus of this work and will be 

discussed in detail in future research.  

Figure 3: Sequence diagram of data exchange between AAS and optimization framework by a service. 

5. Verification 

In this section, we validate the proposed framework using a virtual production system consisting 

of two parallel circulation systems, each consisting of one workstation for formwork, 

reinforcement, concreting, and stripping, while having two stations for curing. The objective is 

to produce ten concrete modules distributed over three orders. One challenge in simulating the 

production flow of an automated production system for precast concrete modules is the need 

for production data that is the basis for the presented framework. In this regard, production data 

for the conventional production of precast concrete modules are used, as presented in Table 1 

(Du et al., 2021), to verify our approach. Although this data does not represent production 

systems modeled on I4.0, they are suitable for verifying our framework. Figure 4 illustrates the 

optimized production flow visualized in a Gantt chart produced by Sim4BFT after a scheduling 

request. It shows that the scheduler has correctly modeled all modules and processes. 

Aggregating relevant data from the production system enables real-time monitoring and 

optimization of production activities, allowing potential bottlenecks and delays to be detected 

early. The DT approach facilitates integrating and utilizing current production data from sensors 

and IoT devices. Moreover, applying AI techniques to predict future production states is 

possible and will be a focus of future research. DS allows for creating flexible production 

schedules that minimize the risks of delays and downtime. These schedules are adjusted in real-

time as production conditions change, ensuring that production stays on schedule and is 

optimized for maximum efficiency. This approach’s scalability depends on the specific needs 

of the production process and can be adjusted accordingly. However, the system’s scalability 
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can be expanded or reduced by adding or removing production units and jobs and adjusting the 

amount of data being collected. 

Table 1: Processing times (in hours) of precast concrete modules according to Du et al. (2021). 

Part Type Formwork Reinforcement Concrete Curing Stripping 

1 0.5 1 0.4 7 0.5 

2 2 2 0.5 7 1 

3 1.5 1.5 0.5 7 1 

4 1.5 2 0.5 7 1 

5 0.5 1 0.2 7 0.5 

6 0.7 2 0.5 7 0.6 

7 2 2.5 0.5 7 1.5 

8 0.5 1 0.3 7 0.4 

9 3.5 3 1 7 1 

10 1.5 1.5 0.5 7 1 

Figure 4: Gantt chart of the optimized production schedule. 

6. Conclusion 

This paper presents an approach to integrating dynamic scheduling into an I4.0-based 

production system. The proposed method employs a DT to aggregate data collected at the 

product and machine levels. This data is available to an optimization framework through a 

service, enabling dynamic production process scheduling. To demonstrate this concept, we use 

the AAS as the DT’s technical implementation and the Sim4BFT optimization framework for 

dynamic scheduling. The key takeaways from this study are: 
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• Aggregating product, machine, and process data into a hierarchical DT structure of the 

production system is essential to achieve optimized dynamic scheduling of production 

processes for precast concrete modules. 

• The AAS allows for modular implementation of production systems’ DT providing 

standardized interfaces for the data exchange with a service. 

• To make data stored in DT usable, it’s necessary for external applications to have access 

to it. A service-oriented architecture enables a coordinated data exchange while 

allowing for a flexible and extensible implementation. 

 

While this paper focuses on the interaction and communication between the production 

system’s DT and the optimization framework via a service, future research will explore the 

communication and interaction with the DT at the product and machine levels providing a more 

comprehensive understanding of how data can be collected, aggregated, and utilized to optimize 

production processes. 

The main limitation of this paper is based on the lack of production data and the resulting 

inability to demonstrate the effectiveness of the proposed approach in real-world scenarios. 

Since the approach has not been tested on real-life production systems and data, it is difficult 

to assess its efficacy. 
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