## Shedding Light on NOIR - Rethinking Scales of Measurement

#### Chris Brunsdon

National Centre for Geocomputation Maynooth University

contact: christopher.brunsdon@nuim.ie







### Nov 2018 (CASA@UCL)

Chris Brunsdon NOIR (1 of 38)

## ... or: A Chat about NOIR



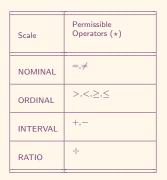
Sorry. Pun intended.

| Scale    | Basic Empirical<br>Operations                               | Mathematical Group<br>Structure                                        | Permissible statistics                                 |
|----------|-------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|
| NOMINAL  | Determination of<br>equality                                | Permutation group:<br>x' = f(x), f<br>permutes x values                | Number of cases,<br>mode                               |
| ORDINAL  | Determination of greater or less                            | Isotonic group:<br>x' = f(x) f any<br>monotonic increasing<br>function | Median, percentiles                                    |
| INTERVAL | Determination of<br>equality of intervals<br>or differences | General linear group:<br>x' = ax + b                                   | Mean, standard<br>deviation, rank order<br>correlation |
| RATIO    | Determination of<br>equality of ratios                      | Similarity group:<br>x' = ax                                           | Coefficient of variation                               |

Properties accumulate as columns are descended N-O-I-R. Restrictive on C3, expansive on C2,C4.

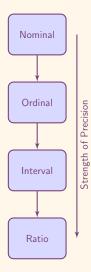
See Stevens, Stanley Smith. 1946. "On the Theory of Scales of Measurement." Science 103 (677-680)

•  $x \star y = z \iff f(x) \star f(y) = f(z)$ 



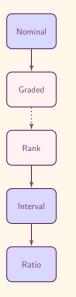
NB. Permissible operators are cumulative.

## A Possible 'Nested' Arrangement ?



- Bad things come in threes
- ... if you count them in threes
- Scales of measurement are nested
- ... if you only look at the nesting scales
- Is the list universal? Hint: No
- If not, what is missing?
- or is there anything else that slots in?

## 'Slotting In' - Splitting 'Ordinal'



- ORDINAL  $\Rightarrow$  (GRADED,RANK)
- Graded membership e.g. High, Medium, Low
- Rank position in a race etc.
- $\bullet\,$  In one respect the same ie  $\geq\,$  etc valid
- But also unique for each observation no ties (mostly!)
- Rank-based statistics
  - $\bullet$  Spearman's  $\rho$
  - Mann–Whitney U
  - Kendall's  $\tau$

now practical for comparisons

## Possible Issues Give Rise to a Non-NOIR Scale

- Example Running shoes
- Is there a difference in the rate I run for shoes A and B?

| Shoes | Units       |      |      |       |       | Measure | ments |      |      |      |      |
|-------|-------------|------|------|-------|-------|---------|-------|------|------|------|------|
|       | Pace min/km | 6.45 | 6.44 | 5.80  | 5.93  | 6.08    | 6.37  | 6.64 | 6.30 | 6.61 | 6.06 |
| A     | Speed km/hr | 9.30 | 9.32 | 10.34 | 10.12 | 9.87    | 9.42  | 9.04 | 9.53 | 9.08 | 9.90 |
| D     | Pace min/km | 6.47 | 6.42 | 6.45  | 6.47  | 6.37    | 6.68  | 7.00 | 6.73 | 6.17 | 6.36 |
| D     | Speed km/hr | 9.28 | 9.35 | 9.30  | 9.28  | 9.42    | 8.98  | 8.58 | 8.92 | 9.72 | 9.43 |

- Should I choose pace or speed to test ?
- Both are ratio scale
- Both are measures of 'rapidity'
- No obvious reason to favour one over the other

## Looking at the test(s)

#### t-tests using both variables

| Variable | <i>t</i> -statistic | D.F. | <i>p</i> -value |
|----------|---------------------|------|-----------------|
| Speed    | 2.122               | 18   | 0.0480          |
| Pace     | -2.100              | 18   | 0.0501          |

Mann-Whitney U tests using both variables - replaces values by rank - 'demoting' the precision of information.

| Variable | W-statistic | <i>p</i> -value |
|----------|-------------|-----------------|
| Speed    | 75          | 0.0630          |
| Pace     | 25          | 0.0630          |

Is there a way to carry out a consistent test **without** loss of information and power?

## The log interval scale

- Also proposed by Stevens
- Essentially log(x) is interval scale, not x
- Group structure is  $f(x) = ax^b$ , f is a permissible transform
- Note that pace =  $60 \times \text{speed}^{-1}$  so fits this structure
- So log(pace) and log(speed) are interval data, and *t*-test is permissible

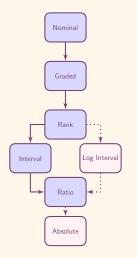
#### t-tests using both variables logged

| Variable | <i>t</i> -statistic | D.F. | <i>p</i> -value |
|----------|---------------------|------|-----------------|
| Speed    | 2.112               | 18   | 0.0489          |
| Pace     | -2.112              | 18   | 0.0489          |

- Introducing this level of measurement leads to a better approach
- Note that it implies initial measurements only meaningful for x > 0

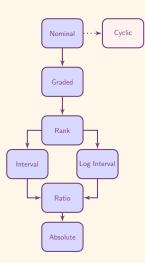
- For log interval measurements we have x > 0
- Other constrained measurement levels exist:
  - probabilities  $p \in [0, 1]$  (constrained in both directions)
  - counts *n* must be non-negative integers  $n \in \{0\} \cup \mathbb{Z}^+$
- Here the only permissible transform is f(x) = x the identity function
- This is the **absolute** scale

## Augmenting NOIR



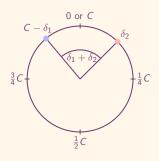
- The 'hierarchical' structure is gone
- A further thought for analysis output statistic may be a different level of measurement than the data.
- So *p*-values (absolute) must be equal under permissible input transforms
- But means are measured at the same level as the input data, so can be equivalent under permissible interval or ratio transforms.

## The Cyclic Measurement Scale



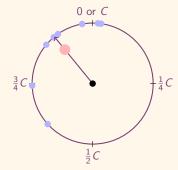
- Angles, Times of Day, Times of Year
- Difference between eg 359° and 357° same as between 359° and 1°
- Have a well-formed notion of =, $\neq$ ,+, -, ×, ÷, but not >,<,≥,≤
- So in terms of NOIR they have some characteristics of Interval and Ratio data but not those of Ordinal

## Cyclic Measurement Scales - Defining 'Difference'



- Difference is not exactly the same for cyclic data
- Mean and circular variance also defined differently, but permissible.
- Quantiles not well defined occasionally mean also undefined
- Median defined but not in terms of order - also sometimes undefined
- ... the latter if locations on the circle have centre of gravity at the centre of the circle.
- Also statistical tests exist eg for comparing two samples.

## Circular Mean and Standard Deviation



• Circular Mean:

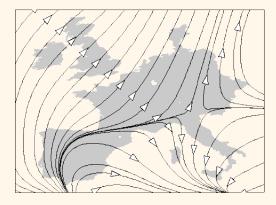
• 
$$\tilde{x} = \tan_2^{-1} \left( \sum_i \sin(x_i), \sum_i \cos(x_i) \right)$$

• Circular SD:

• 
$$\nu = \sqrt{-\ln\left(\left(\frac{1}{n}\sum_{i}\sin(x_{i})\right)^{2} + \left(\frac{1}{n}\sum_{i}\cos(x_{i})\right)^{2}\right)}$$

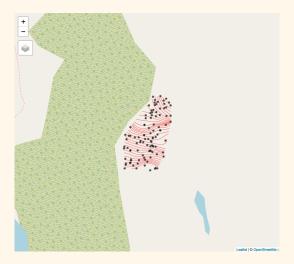
## Example - Adding spatial weighting to circular means

- $\bullet \ \ \mathsf{Moving} \ \ \mathsf{Window} \ \ \mathsf{Mean} \ \mathsf{Directions} \Rightarrow \mathsf{Streamlines}$
- NOAA Wind direction data



## Further Example

- Moving Window Mean Directions  $\Rightarrow$  Streamlines
- Sink Hole Orientation Data from Student Field Work



Chris Brunsdon NOIR (16 of 38)

## Proposed Alternative Lists of Levels

#### **Tukey and Mosteller**

#### Names

- Grades (e.g. freshmen, sophomores etc.)
- Counted fractions bound by 0 and 1
- Counts (non-negative integers)
- Amounts (non-negative real numbers)
- Balances (any real number)

#### Chrisman

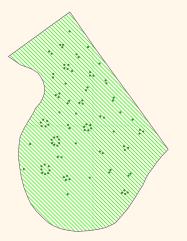
- Nominal
- ② Graded membership
- Ordinal
- Interval
- Log-Interval
- Extensive Ratio
- O Cyclical Ratio
- Oerived Ratio
- Ounts
- Absolute

## Some Further Extensions

#### • Increased Dimension

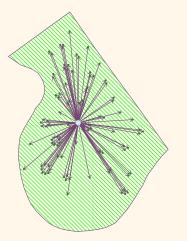
- Initially to 2D
- Similar to direction, no  $\geq,>,\leq,<$
- Obviously important for geographers!
- Constraints
  - eg Values must be in positive (in  $\mathbb{R}^+),$  or in [0,1] or an integer (in  $\mathbb{Z}^+)$
  - Already there in Mosteller and Tukey or Chrisman implicitly
  - Look into this in a multidimensional context
- Partially ordered sets

## 2D Point Data



- Eg. locations of people sitting in Gordon square (near UCL)
- 2D measurements are 'integral' - eg easting on its own means little
- group structure is set of Euclidean transforms combinations of:
  - Scaling
  - Rotation
  - Translation

## 2D Mean (Mean Centre)



• 
$$\mathbf{\bar{x}} = \operatorname{argmin}_{\mathbf{x}} \left[ \sum_{i=1}^{n} \left( \mathbf{x} - \mathbf{x}_{i} \right)^{2} \right]$$

- So x̄ minimises squared distance to each of the data points
- Associated measure of spread:

• 
$$D_s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left( \mathbf{\bar{x}} - \mathbf{x}_i \right)^2}$$

- Standard distance root mean squared distance from  $\bar{\mathbf{x}}$  to data points.
- Both consistent under Euclidean transform

## Directional Data Revisited

- Also interpretable as 2D data?
- $\mathbf{x} = (x, y)$
- Constraint is  $x^2 + y^2 = 1$
- Also a log connection:
- Complex representation as  $e^{i\theta}$
- log of this is  $i\theta$ 
  - this can work as interval scale
  - although inverse transform is cyclic

• 
$$e^{i\theta} = e^{i\theta+2k\pi}$$
 if  $k \in \mathbb{Z}$ 

 A partially ordered set has some pairs of members which ≤ holds – but not all pairs

#### Properties of $\leq$ and friends

•  $a \leq a$  (Reflexivity)

- 2 If  $a \leq b$  and  $b \leq a$  then a = b (Antisymmetry)
- If  $a \leq b$  and  $b \leq c$  then  $a \leq c$  (Transitivity)

④ 
$$a \prec b$$
 implies  $a \preceq b$  but  $a \neq b$ 

 $b \succ a \text{ means the same as } a \prec b$ 

**Take-home**  $\prec$  etc. work like comparison operators like < etc. but **only** on **some** pairs of objects...

| Data | Description |
|------|-------------|
| Data |             |

| Indicator             | Name       | Description                           |
|-----------------------|------------|---------------------------------------|
| <i>s</i> <sub>1</sub> | Income     | Per capita income (1974)              |
| <i>s</i> <sub>2</sub> | Illiteracy | Illiteracy (1970 percept of popn.)    |
| <i>s</i> <sub>3</sub> | LifeExp    | Life expectancy in years (1969-71)    |
| <i>S</i> 4            | Murder     | Murder and non-negligent manslaughter |
|                       |            | rate per 100,000 popn. (1976)         |
| <i>S</i> 5            | HSGrad     | Percent high-school graduates (1970)  |

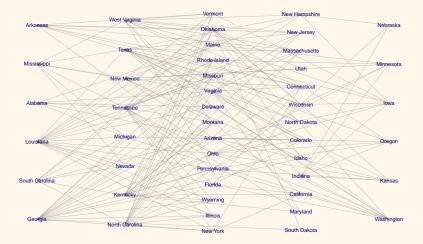
Table: US Well-being variables by State

#### Definition of $\leq$ etc here:

For US states a and b,  $a \leq b$  if and only if  $s_{1a} \leq s_{1b}$  and  $s_{2a} \geq s_{2b}$ and  $s_{3a} \leq s_{3b}$  and  $s_{4a} \geq s_{4b}$  and  $s_{5a} \leq s_{5b}$ 

- a ≤ b implies state b is 'doing better' that state a on all indicators.
- States no longer fully rankable, but some still precede others
- Only requires consensus on sign of variables, not on weighting

## Visualising the US poset:



#### Figure: Hasse Diagram (Peeled Minimal Elements)

## Some terminology

- A chain C ⊆ P is a set such that all a, b in C are comparable. Note that a chain is therefore an ordered set. A chain is maximal if no other chain C' exists such that C ⊂ C'.
- The *depth* of a poset  $\{\mathcal{P}, \preceq\}$  is the length of its longest chain.
- An antichain A ⊆ P is a set such that no distinct a, b in A are comparable. An antichain is maximal if no other antichain A' exists such that A ⊂ A'.
- An element a ∈ P is a maximal element if there is no element b ∈ P such that a ≤ b. The maximal element set is the set of all such elements. Similar for minimal—

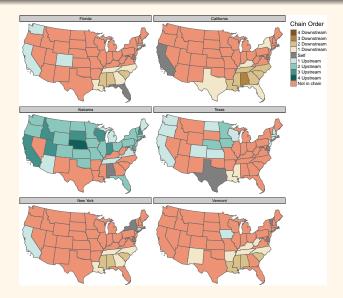
## Geographical Hasse Diagram is Revealing...



Figure: Hasse Diagram (Based on Geographical Location)

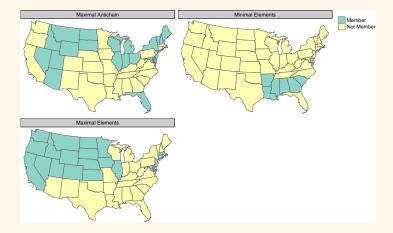
"In general states in the north west tend to enjoy a better state of well being (at least on the basis of this index) ..."

## Some chains of well-being



#### Figure: State-focused Relationship Maps

## Minimal and Maximal Elements and the Maximal Antichain



### Figure: Significant Set Maps

#### ... It looks like they do, at least here

|                      | Minimal Elements | Maximal Elements | Maximal Antichain |
|----------------------|------------------|------------------|-------------------|
| Join Count statistic | 5.043            | 4.076            | 2.817             |
| <i>p</i> -value      | 0.000            | 0.000            | 0.002             |

#### Tobler revisited?

"not everything is comparable to everything else, but near things are less likely to be comparable than distant things."

# Are Measurement Theory and Steven's Scales Helpful Anyway?

- Idea is not without its critics
- The original simple idea would be helpful if comprehensive
  - But it isn't !
  - Especially for geographers ...
  - Rather like 'i' before 'e' except after 'c'
  - "My neighbour is agreeing to reimburse the conciege with madiera and caffeine."
  - So many contradictions, hardly a structural rule...

- Previous points were a critique of Steven particular categorisation
- ... but not of measurement theory per se
- Are there times when it malkes sense to use an analysis technique that isn't permissible?
- A lot of non-parametric statistical methods do this

- Spearman's Rank Correlation Coefficient
  - equivalent to Pearson's coefficent applied to ranks
  - ... calculating means and variances of ranks NOT PERMISSIBLE!
- Wilcoxon Rank Sums test
  - ADDING RANKS NOT PERMISSIBLE!

## But in some ways not meaningless...

- Higher average ordinal score does imply more high ranking scores
- Its just that difference don't make sense -
  - 4.5 > 4.2 but
  - 4.5 to 4.2 is not the same as 3.5 to 3.2 or 1.9 to 1.6 ...
- Similar ID numbers may be thought of as nominal BUT
  - If allocated in sequence they may be a proxy for ordinal time
- Floor on an apartment block is ordinal, but could be ratio if all floors same height
  - It depends on context as well as measurement level

- "Permission is not required in data analysis."
- "If a mathematician gives or witholds 'permission' ... , he (sic) may be accessory to helping the practioner escape the reality of defining the research problem."
  - Guttman, 1977
- "Experience has shown that in a wide range of situations that the application of proscribed statistics to data can yield results that are scientifically meaningful, useful in making descisions, and valuable as a basis for further research."
  - Velleman and Wilkinson, 1993

## Perhaps if not axiomatic, still sometimes helpful ?

- Ultimately need to think about research questions of themselves
- Not the scale of measurement of data used to investigate them
- They can occasionally provide useful guidelines, though
  - Thus although means of Likert scales can be compared, they do not convey the full richness of interval or ratio means
- Possibly the idea of *casting* as in the C programming language is useful
- x = (float) i or n = (int) y convert data of one type to another
  - but sometimes with a loss of detail, or future flexibility

## **Final Thoughts**

- NOIR was a useful starting point but
- actually a lot more going on suggested revised diagram below



- I haven't covered all possible measurement scales here
- Perhaps an axiomatic approach is unhelpful
- But viewed as one way to assess analysis it has some uses. . .
- But perhaps we need to move beyond NOIR as quantitative *and* theoretical geographers

### The contribution of Science Foundation Ireland (Investigators Programme Grant 15/IA/3090 - Building City Dashboards) is gratefully acknowledged.

# Tensions between Measurement Theory and Statistical Models

- Doesn't statistical modelling make this redundant?
- Choosing a log interval scale might imply *t*-tests on logged data
  - But so would a log-normal model
- Indeed although logs in the running example ensures an invariant *p*-value
  - $\bullet \ \ldots \ it would be numerically incorrect of model assumption not true$
- Also it is quite possible to derive the distribution of a sum of ranks
  - ... even though measurement theory says this is meaningless !

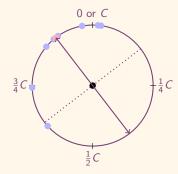
# Occasionally the idea of Measurement Scale is Food For Thought

- Spearman's Rank Correlation Coefficient flawed in measurement scale terms but Kendall's τ coefficient isn't
- Kendall suppose we have two variables for each case *i*; *x<sub>i</sub>* and *y<sub>i</sub>*. If we choose two cases at random, say *j* and *k*

• let 
$$p = \Pr(x_i > x_j \text{ and } y_i > y_j)$$

- then  $\tau = 2 * p 1$
- Only uses >, no means etc. therefore fine for any ordered levels.
- Can make a local statistic out of it if a location I and radius r is associated with p and a further condition that observations i and j are with a distance r from I.

## Circular Median



- Circular Median:
- If working in radians:
- argmin $_{\psi}\left\{\frac{1}{n}\sum_{j=1}^{n}\left(\pi-|\pi-|\theta_{j}-\psi||\right)\right\}$
- $\psi$  is any angle for which half of the data points lie in  $[\psi, \psi + \pi)$  and the majority of points are nearer to  $\psi$  than  $\psi + \pi$
- $\psi$  may not be unique...

## 2D Median (Median Centre)



- $\tilde{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \left[ \sum_{i=1}^{n} |\mathbf{x} \mathbf{x}_i| \right]$
- So x minimises summed absolute distance to each of the data points
- Associated measure of spread:
- $D_m = \text{median}(|\mathbf{\tilde{x}} \mathbf{x}_i|)$
- Median distance median distance from x to data points.
- Both also consistent under Euclidean transform

- They can be defined even for scales of measurement without  $\geq,>,\leq,<$  operators
- ... on the basis of distance
- This also implies measures of spread
- ... based on this distance
- Generally (ie it needs proving!) if level of measurement may be ordered it corresponds to 50th percentile
- But it doesn't need this to be defined!

- Choice of scale of measurement from NOIR influences the kinds of analyses that are meaningful
- Steven's uses the term 'permissible'
- Main idea is that results of analyses should be invariant if data is transformed by a permissible function *f*
- These are the f's listed in the third column on slide 3

| Temperatures are interval scale $\frac{20^{\circ}C}{10^{\circ}C} \neq \frac{68^{\circ}F}{50^{\circ}F}$ |      |         |        |          |        |         |        |
|--------------------------------------------------------------------------------------------------------|------|---------|--------|----------|--------|---------|--------|
| Year                                                                                                   | Peak | Daily T | empera | ture - \ | Week 1 | of July | ′ (°C) |
| 2016                                                                                                   | 20.5 | 24.5    | 26.0   | 22.0     | 20.1   | 18.2    | 19.1   |
| 2017                                                                                                   | 22.4 | 20.1    | 18.7   | 19.2     | 19.1   | 20.3    | 22.7   |

| Units | t-test $H_0: \mu_a = \mu_b$ | Mean (2016) | Mean (2017) | $\Delta\%$ means |
|-------|-----------------------------|-------------|-------------|------------------|
| °C    | p = 0.38                    | 21.5 °C     | 20.4 °C     | -5.3%            |
| °F    | <i>p</i> = 0.38             | 70.7 °F     | 68.6 °C     | -2.9%            |

NB. 21.5  $^\circ\text{C}$  = 70.7  $^\circ\text{F}$  and 20.4  $^\circ\text{C}$  = 68.6  $^\circ\text{F}$ 

## Measurement Scales for Statistics or Tests

| Statistic                  | Level of Measurement                                     |
|----------------------------|----------------------------------------------------------|
| Mean                       | Ratio or Interval                                        |
| Quantiles                  | Rank, Graded, Interval, Log<br>Interval, Ratio, Absolute |
| Standard deviation         | Ratio ?                                                  |
| <i>p</i> -value            | Absolute                                                 |
| Posterior<br>Probabilities | Absolute                                                 |