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Abstract

Some of the rents identified in the Maximum Entropy(ME) gravity model are always negative. We
show this is not true for the Minimum Mutual Information(MMI) formulation of the model or for the
Uniform prior (UP). Both methods give identical positive rents lending weight to the idea that these
rents are invariant to the choice of baseline. Furthermore, we show that the differences in origin rents
and in destination rents between ME and the UP and MMI models are both constant which preserves
the ME trip matrix and mean trip cost.

1 Introduction

Negative rents arise in the Maximum Entropy negative exponential gravity model because the balancing
factors may be greater or less than one meaning that under the total flow constraint other factors must be
less or greater than one than one. In the Maximum Entropy model negative rents arise when the balancing
factors are greater than one. They serve to correct flows that are otherwise too low to conform to the
constraints. The converse is true for balancing factors less than one. In the monopolar von Thünen model
the boundary of the model is taken to be where rents go to zero. This is the point at which agricultural supply
to the central city ceases because the cost of travel is too high. Beyond this cost boundary is von Thünen’s
wilderness. This analysis is not appropriate in the multipolar case since the cost of travel to one pole may
be too high but others may be reachable and, for most study areas, there is no wilderness. Nevertheless,
the rents in the gravity model are of the von Thünen type albeit they are multipolar (Morphet, 2015).
The interpretation of the balancing factors as functions of rent has long been suggested (Dieter, 1962)and
known(Cesario, 1977) and the solution for the problem of negative rents has been taken to be adding to all
rents an amount slightly greater than than the most negative rent(Williams and Senior, 1978; Shabrina and
Morphet, 2022). This is a somewhat informal solution which forces uniform arbitrary, uplifts on origin and
destination rents as but preserves the trip matrix and hence the average trip cost. In this working paper
we investigate the use of a model derived datum and show how this allows the estimation of rents which
are canonical in the sense that they are endogenous and hence comparable across and between study areas.
We compare three doubly constrained models, the standard Maximum Entropy (ME) model,the Minimum
Mutual Information (MMI) model and the Uniform Prior (UP) model. We use two data sets the first with a
5x5 trip matrix is essentially a toy model(Kirby, 1970).This model is exact in that its elements are chosen to
fit exactly a given value of the deterrence function exponent. This permits an examination of the structure
of the models uncluttered by any random sampling effects. The second is the Arcadia Model (Batty, 2009)
which, with a 1767x1767 trip matrix based on Census data shows random effects and reflects some of the
variation faced in practical analyses. It is therefore, more realistic and covers an area approximating the
Outer Metropolitan Area of London and South East England. We also demonstrate a method for checking
the validity of the sign conventions used in calculating the rents. The results (see the Appendix) show that
positive rents can be relied upon when using the Minimum Mutual Information and Uniform Prior models
and further, that the differential between these rents and those derived from the Maximum Entropy model
is a constant. This ensures that the trip matrices are unaffected by the method of rent estimation and thus
emphasise the consistency between the model types whilst rendering unnecessary the questionable use of an
arbitrary uplift.
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The importance of the rents relates to both their absolute values and to changes in those values under the
influence of transport and density changes. The differential values remain useful in analysing the effects
of transport investments including their relative distributional effects. The non-negative values are easier
to explain and are useful in relating the derived rents to observed rents as part of validation.The absolute
values are also of use in analysing the nature of the property market as it relates to access, incomes and the
location of benefits arising from transport investments.

The gravity model seeks to represent the reaction to travel costs of travellers seeking interactions over space.
Since travel costs are an impediment to travel they represent a restraint on interaction. Where this interaction
is trade in goods, services, ideas and information, travel costs are a restraint on trade and accordingly the
model is a model of imperfect competition. This results in prices within the market being studied, being
higher or lower than those of perfect competition. The reasons for this are discussed in section 6.

2 The Models

We look at three closely related models. The Maximum Entropy model which has a deterrence function of
e−βcij , the Minimum Mutual Information model with a deterrence function of pipje−βcij and the Uniform
Prior model with a deterrence function of n−2e−βcij where n is the number of zones. All three models give
the same trip matrix and the same value of β when calibrated. It should be noted that the rent values
derived from the balancing factors are rents per trip just as the costs are costs per trip.

2.1 Maximum Entropy

The Maximum Entropy model is derived by maximising the entropy in the constrained Lagrangian as follows:

L = −
n∑

i=1

n∑
j=1

pij lnpij − λ0

n∑
i=1

n∑
j=1

pij − 1 +
n∑

i=1
λi

n∑
j=1

pij − pi∗ −
n∑

j=1
λj

n∑
i=1

pij − p∗j + β
n∑

i=1

n∑
j=1

pijcij − c

(1)

Differentiating L with respect to pij and setting the result to zero delivers the Maximum Entropy model
thus

pij = e−λ0e−λie−λj e−βcij (2)

In this model λ0 is a normalising factor usually designated as the partition function and e−λi and e−λj are
origin and destination balancing factors. The rents in this case are given by − 1

β lnλi and − 1
β lnλj respectively

(Morphet, 2015).

2.2 Minimum Mutual Information

Similarly the Mutual Information is minimised in the constrained Lagrangian as follows:-

L =
n∑

i=1

n∑
j=1

pij ln
pij

pipj
− λ0

n∑
i=1

n∑
j=1

pij − 1 −
n∑

i=1
λi

n∑
j=1

pij − pi∗ −
n∑

j=1
λj

n∑
i=1

pij − p∗j − β
n∑

i=1

n∑
j=1

pijcij − c

(3)

Differentiating L with respect to pij and setting the result to zero delivers the Minimum Mutual Information
model thus
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pij = pipje−λ0e−λie−λj e−βcij = e−λ0e−λi+lnpie−λj+lnpj e−βcij (4)

In this model the pipj factor acts as a prior corresponding to a rent of − 1
β ln(pipj) which is the joint rent

corresponding to zero trip cost i.e the rent at the von Thünen pole (see Figure 1). This joint rent or Zero Trip
Cost Rent(ZTCR) factors into ZTCRi an origin rent − 1

β ln(pi) and ZTRCj a destination rent − 1
β ln(pj).

In the derivation of the relationship between rent in the von Thünen model and rent in the gravity model
the term ln(pi) − λi in the Minimum Mutual Information model plays a similar but not identical role to the
balancing factor −λi in the Maximum Entropy model. The former term results in a rent of −1

β (ln(pi) − λi)
which is positive for −ln(pi) > λi which is the case when pi is less than the balancing factor. In the Minimum
Mutual Information model the λ values act as corrections to the log(pi) or ZTCR values.The two elements
in the Minimum Mutual Information balancing factors may be seen to reflect spatial pattern (ln(pi)) and
spatial interaction (−λi) in a manner rather simpler than those reviewed by Oshan (2021).

2.3 Uniform Prior

The UP model resembles the MMI model but with the replacement of the pipj factor by n−2 where n is the
number of zones. The model is derived as in equations (3) and (4).

pij = n−2e−λ0e−λie−λj e−βcij = e−λ0e−λi−ln(n)e−λj−ln(n)e−βcij (5)

3 The causes of negative rents

Figure 1: von Thünen Negative Rent

It is important to consider the causes of negative rents in reality and distinguish them from those caused by
the method of deriving the model and its method of calculation.

3.1 Negative rents in reality

In reality a site may have a negative rent or value because of its associated costs of remediation arising
from pollution or the costs of providing access and services. Such negative rents arise irrespective of the
distribution of trip ends and population. Negative rents may also arise in cases where the rent paid is
regulated to be less than a market rent. This is a defining feature of social housing and reflects not just the
basic need for shelter but also the dependence of the housing/commercial/land market on a service labour
force for which it does not fully pay. Although such reasons are of practical and policy importance they will
only be reflected in the model by the extent to which they influence origins and destinations. However, if
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negative rents are caused by components of reality reflected in the model i.e trip costs and trip ends, then
they should be regarded as identifying areas in need of greater access and/or development. Where the model
is one of journey to work then negative rents may flag up areas disconnected from the labour market being
modelled. In this case a negative rent may mean that rents are accruing outside the modelled area. We
may also regard a negative rent for a particular origin zone as the subsidy needed for workers to pay a rent
sufficicient to join the labour market being modelled. Similarly, negative destination rents may reflect the
subsidy needed for employers to locate in a given zone.

We distinguish between negative rents which should not arise in the model and those rents which are greater
or lesser than the rents we might expect under perfect competition. Such rents will arise in the model as a
result of trip and location decisions being taken in an imperfect market characterised by an oligopolic supply
of transport services, imperfect information and lags in the housing and land markets. This is considered
further in section 6.

3.2 Negative rents in the model

The difficulty in measuring rents in the model lies in the definition of a zero rent baseline. The lowest
modelled local rent will be defined by the intersection of the von Thünen cones with each other (see Figure
1) as analysed by Launhardt (1885). In the model neither the level von Thünen plain nor the von Thünen
wilderness are defined. The rents themselves are generated by the interaction of costs and the map pattern
of trip origins and destinations. Indeed we can view the model as being that for a change of pattern of
the origin map into the destination map. In the ME model we expect negative rents when the balancing
factors are greater than one and this gives us two potential explanations which both depend on whether the
balancing factor is greater or less than one.

1. the balancing factor is a multiplier of pi or pj implying that the level of trips is lower or higher than
that justified by the trip cost

2. the balancing factor is a multiplier of e−βcij implying that trip costs are too low or too high for the
given number of trips.

It may also be that both mechanisms operate simultaneously.

The choice of explanations depends on whether we concentrate on trips or trip costs. We work mainly with
the first as it focusses on the trip matrix margins as do the estimated rents. It is also implicit in the Minimum
Mutual Information and Uniform Prior model structures since the balancing factors together with pi, pj or
n−2 factor into origin and destination effects whereas cij does not and of course, cij is considered as fixed in
the model. If we find surprisingly low or negative rents in the model it is likely to reflect areas with a dearth
of public or private transport. This is unlikely in a 2001 model of South East England as presented below.
It may however, be found in areas of the UK where public transport services do not offer full coverage. It
does not of course, mean that there are individuals receiving the benefits of a negative rent but rather they
are unable to derive a living within the labour market and must rely on other means of income support. In
practice negative rents will not arise if we use the Minimum Mutual Information formulation of the model
but will certainly be seen when we use the Maximum Entropy version. The rents calculated are based on
accessibility levels and it may be the case that costs of land remediation are such as to result in a negative
vauation. Further, In agricultural areas access to labour markets may not be the driver of rent values and
agricultural land values based on fertility and market access may dominate.

4 Model comparison

In this section we compare the Maximum Entropy, Minimum Mutual Information and Uniform Prior models
in their characterisation of rents. We use a 5x5 model (Kirby, 1970) as this allows visual inspection of the
results. The cost matrix is symmetrical and the trip matrix has a β value of 0.1 with trip matrix and origins
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Table 1: Cost data
Z1 Z2 Z3 Z4 Z5

Z1 10.0 14.1 14.1 14.1 14.1
Z2 14.1 10.0 20.0 28.3 20.0
Z3 14.1 20.0 10.0 20.0 28.3
Z4 14.1 28.3 20.0 10.0 20.0
Z5 14.1 20.0 28.3 20.0 10.0

Table 2: Zero trip cost interaction rents
Oi Dj Z1 Z2 Z3 Z4 Z5

Z1 29.9573 6.9315 36.8888 41.9971 52.9832 59.9146 59.9146
Z2 29.9573 12.0397 36.8888 41.9971 52.9832 59.9146 59.9146
Z3 12.0397 23.0259 18.9712 24.0795 35.0656 41.9971 41.9971
Z4 6.9315 29.9573 13.8629 18.9712 29.9573 36.8888 36.8888
Z5 23.0259 29.9573 29.9573 35.0656 46.0517 52.9832 52.9832

and destinations chosen to agree with this. This gives an exact model with a level of exactitude that is
useful in determining relationships that exist in the model. The small size of the model allows element by
element inspection of its workings. In practice the observed trips would be from a sample that is randomly
selected over a given period so exact results as shown below are unlikely to be reproduced in reality unless
they represent invariant properties of the model. Models based on observed data will tend to propagate any
random variations in the observations. Later in section 5 we carry out a full scale comparison that parallels
the 5x5 test.

As rents decline with increasing distance the zero trip cost or perfect competition rents(ZTCR) arise when
the trip cost is zero giving pij = pipj with origin and destination rents of − 1

β ln(pi) and − 1
β ln(pi) respectively.

They are necessarily positive as pi and pj are both less than unity. Under perfect competition we might
expect ZTCR to be a maximum rent but under imperfect competition this is no longer the case (see section
6)

4.1 Base Data

The test model has a 5x5 matrix of trip costs (Table 1), a set of origins and destinations (Table 3). The
value of β is 0.1 giving an average trip cost of 16.38. The flow matrix, pipj , corresponding to a zero trip cost
is shown in Table 2 and acts as a premutiplier to e−βcij in the Minimum Mutual Information model.

4.2 Maximum Entropy Model

For this model the deterrence function is e−βcij For each model we show a flow matrix (Tables 4 and 7),mean
costs (Tables 5 and 8) and balancing factors and rents (Tables 6 and 9).

Table 3: Origins and Destinations by zone
Z1 Z2 Z3 Z4 Z5

Origins 500 500 3000 5000 1000
Destinations 5000 3000 1000 500 500

5



Table 4: MaxEnt Flows by zone
Z1 Z2 Z3 Z4 Z5

Z1 215 211 37 13 25
Z2 143 319 20 3 14
Z3 1305 1069 505 66 56
Z4 2882 1029 410 395 283
Z5 455 372 28 23 122

Table 5: MaxEnt Mean Costs
Trips Orent Drent
16.38 4.516835 3.977007

4.3 Minimum Mutual Information Model

For this model the deterrence function is pipje−βcij . A comparison of the flow tables 4 and 7 shows the well
known result that they are identical with the consequence that their mean trip costs shown in table 5 and 8
are also identical.

## [1] "Sum ln(Pij) for 5x5 model=-108.169968559108"

## [1] "Sum of cost data for 5x5 model=436"

## [1] "Estimated 5x5 beta value=0.0953784043109038"

The differences all arise in the balancing factors and rents with the average rents of the Minimum Mutual
Information model being substantially greater than the Maximum Entropy model rents as shown in tables
5 and 8.

In Table 9 the columns Orent and Drent are those elements of rent derived from the λ values alone.They
are the corrections to the ZTCR rents which result in the Minimum Mutual Information rents. It will be
seen that adding the corrections to the zero tripcost rents results in all rents being positive (Table 9). In
figure 2 we compare the MaxEnt and MMI rents for origins and for destinations. It will be seen that the
relationship is linear with the MMI rents being larger but with a similar range.The slope of the line is 1
in both cases indicating thatt they differ only by a constant. The zero trip cost trip distribution is one of
perfect competition as the cost of travel is no longer an impediment to trade. We may thus regard the λi and
λj as measures of the extent of the difference between perfect competition and the imperfect competition
represented in the Minimum Mutual Information model.

We can see from figures 2 and 3 that the minimumum information rents are positive and we detail below
(section 6) why this is so.

Table 6: MaxEnt Factors
BFi BFj Orent Drent OriginZTCR DestinationZTCR

Z1 0.160 1.860 18.30 -6.23 30.00 6.93
Z2 0.161 2.750 18.30 -10.10 30.00 12.00
Z3 1.470 0.479 -3.82 7.37 12.00 23.00
Z4 3.240 0.170 -11.70 17.70 6.93 30.00
Z5 0.511 0.331 6.72 11.10 23.00 30.00
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Table 7: Min Inf Flows
Z1 Z2 Z3 Z4 Z5

Z1 215 211 37 13 25
Z2 143 319 20 3 14
Z3 1305 1069 505 66 56
Z4 2882 1029 410 395 283
Z5 455 372 28 23 122

Table 8: MMI Mean Costs
Trips Orent Drent
16.38 12.23657 11.70617

Table 9: Min Inf Factors by zone
BFi BFj Orent Drent Origin

ZTCR
Destination

ZTCR
MI Origin

rent
MI Desti-

nation
rent

Z1 0.599 0.777 5.120 2.5200 30.00 6.93 35.10 9.45
Z2 0.603 1.910 5.060 -6.4900 30.00 12.00 35.00 5.55
Z3 0.915 0.997 0.893 0.0268 12.00 23.00 12.90 23.10
Z4 1.210 0.707 -1.920 3.4700 6.93 30.00 5.01 33.40
Z5 0.956 1.380 0.447 -3.2000 23.00 30.00 23.50 26.80
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Figure 2: Origin and Destination Comparison
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Figure 3: Origin and Destination Profile Comparison

Table 10: Energy Balance
Entropy Mean Trip Cost Rent Free Energy

MaxEnt 24.20065 16.38 -8.493842 -16.31449
MMI 24.20065 16.38 23.942745 16.12209

A negative rent requires that pie
−λi > 1 i.e. that ln(pi) − λi > 0 but ln(pi) is always negative and −λi

is negative. A problem may arise when we have a positive λi expression. In that case ln(pi) + λi > 0 if
λi > |ln(pi)|. This is a situation that becomes more likely as the number of zones increases and the average
value of pi falls and the absolute value of ln(pi) increases.

An inspection of figures 2 and 3 together with their supporting tables 6 and 9 suggests that the slope is unity
meaning that the Minimum Mutual Information and Maximum Entropy rents differ only by a constant thus:

Minimum Information Origin rent = Maximum Entropy Origin rent + 16.75
Minimum Information Destination rent = Maximum Entropy Destination rent + 15.68

(6)

Since it is sometimes difficult to determine the correct sign convention for the rents it is useful to have a
check. This is possible using the equation of state of the model given by:

1
β

S = U + R − G (7)

where S is entropy, U is mean trip cost, R is expected rent(origin plus destination) and G is the Gibbs free
energy corresponding to the consumer surplus − 1

β lnZ where Z is the log sum or partition function.

The two different constants are both greater than the corresponding most negative rents of the Maximum
Entropy model of -11.7 and -10.1 as shown in tables 6 and 9.
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4.4 The Uniform Prior Model

Comparison of figures 4 and 5 for the UP model with those for the MMI model,(figures 2 and 3) shows that
the UP rents are exactly the same as the MMI rents. This is confirmed in table 11 suggesting that the rents
may be invariant to a wide range of biproportional distribution pre-multipliers reinforcing the validity of
their use in terms of model consistency.

Figure 4: Uniform Prior Origin and Destination Comparison

Figure 5: Uniform Prior Origin and Destination Profile Comparison
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Table 11: UP and MMI Rents
Z1 Z2 Z3 Z4 Z5

UP Origin Rent 35.07964 35.021226 12.93312 5.008697 23.47246
MMI Origin Rent 35.07964 35.021226 12.93312 5.008697 23.47246
UP Destination Rent 9.45356 5.550701 23.05261 33.424534 26.75386
MMI Destination Rent 9.45356 5.550701 23.05261 33.424534 26.75386

5 Full Scale Test

In this test we use the Arcadia model (Batty, 2009) for the London Metropolitan Area. It has 1767 zones
but over 80% of the 1767x1767 interchanges are zero. We calibrate the Maximum Entropy model using the
maximum likelihood method of Hyman (1969). The resultant value of β is 0.13975 and this is also used for
the Minimum Mutual Information model. We test the ME and MMI models only as the UP model duplicates
the latter.

The resulting model has a β value of 0.139748 and a mean trip cost of 18.9350504 These values are used in
both the Maximum Entropy model and the Minimum Mutual Information model.

5.1 The Arcadian Maximum Entropy and Minimum Mutual Information Mod-
els

In this section we reproduce for comparison the analyses of the 5x5 model in section 4.
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Figure 6: Arcadia Origin and Destination Comparison

Figure 6 shows a similar pattern to its equivalent in the 5x5 model (Figure 2. They do, however, show a
similarity in that the origin patterns are like the destination patterns.

The average rents in Table 12are simple means rather than the trip weighted expectations of the rents used
below in Figure 8.

Figure 7 shows that the Minimum Mutual Information and Maximum Entropy rents are parallel like those
in Figure 3.
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Table 12: Mean Costs
Beta Trip Cost Orent Drent

MaxEnt 0.139748 18.93574 -1.487205 3.355748
MMI 0.139748 18.93574 49.972205 48.629073
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Figure 7: Arcadia Origin and Destination Profile Comparison
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Table 13: Arcadia Energy Balance
Entropy Mean Trip Cost Rent Free Energy

MaxEnt 86.70323 18.93574 -5.560129 -73.32763
MMI 86.70323 18.93574 98.601278 30.83378

Figure 8 shows the distribution of the differences in total zonal rent values(e.g Oi x origin rent(i)/trip) )
about their mean (vertical line)which corresponds to the uplift. It should be noted that the rent per trip is
a constant but the expected rents are subject to random variation and this is true for the differentials which
are identical for all origins and for all destinations The distributions show a similar skewed shape reflecting
the zone size in terms of origins or destinations. The origin rent uplift is 51.4594097 and that for destinations
52.7019974 so we may write:

Minimum Information Origin rent = Maximum Entropy Origin rent + 51.46
Minimum Information Destination rent = Maximum Entropy Destination rent + 52.70

(8)

This pair of equations may be compared with those in equation (6)

We see that in both cases in table 13 the difference of rent minus free energy is 67.7675. This matches the
difference of entropy (in energy terms) minus mean trip cost and confirms equation (7) in the case of the
Arcadia model. We see that although at equilibrium, the two parts of equation (7) are separable, dynamically
considered the two parts must keep their differences equal

6 Discussion

The comparison between the exact 5x5 model and the Arcadia model allows us to expose those effects which
are endogenous characteristics of the model and those which emanate from random or systematic errors in
the data. Of course the fact that the 5x5 model is exact does not mean it is necessarily good as it may
be mispecified for the purpose in hand. We can however, say from the exact model relationships between
Maximum Entropy rents and Minimum Mutual Information rents that the Minimum Mutual Information
model succeeds in ensuring rent positivity and we can gain insight into why if we explore the equivalence
between the two models thus:

pij = e−βcij e−λE
i e−λE

j

ZE
= pipje−βcij e−λI

i e−λI
j

ZI
(9)

so

ln(pi) + ln(pj) − λI
i − λI

j − lnZI = −λE
i − λE

j − lnZE (10)

and

−ln(pi) − ln(pj) + λI
i + λI

j − λE
i − λE

j = −lnZI + lnZE (11)

giving,after dividing by β multiplying through by pij and summing over ij

origin rentI − origin rentE + destination rentI − destination rentE = CSE − CSI (12)

In this equation CS is the logsum expression for the consumer surplus i.e. CS = − 1
β Z where Z =∑

i

∑
j pipje−βcij−λi−λj in the case of the Minimum Mutual Information model and Z =

∑
i

∑
j e−βcij−λi−λj
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in the case of the Maximum Entropy model. The equation shows us that the total uplift in expected rent
is equivalent to the change in consumer surplus such that the increase in rents is at the expense of an
equivalent decrease in consumer surplus. For the 5x5 model a similar pattern is shown in table 10. The
economic interpretation of the rents and the statistical interpretation of MMI suggests that we should
prefer the MMI formulation over the alternatives we have examined. This analysis follows quite closely
the simple gas model of thermodynamics where it may be argued that the minimum information quantity
is rather more fundamental than the entropy (Jaynes, 1968). It is also identified as forming the basis of
a non-equilibrium thermodynamics by Koopman (Good, 1963). Apart from the identification of the MMI
with the Kullback-Leibler distance of the observed matrix from the perfect competition matrix we may
also identify this dimensionless divergence with the area of Harberger’s triangle (Morphet, 2015). The
Mutual Information may be interpreted as the expected Bayes-Turing log-factor (Good, 1963) and as such
it represents the weight of evidence of the model over that of the null hypothesis which in our case is the
assumption of zero trip costs.

The question of the extent to which unearned rents accruing to landlords are equivalent to benefits applying
to consumers is debateable but its resolution will have some impact on the viability of proposed transport
infrastructure improvements (see Mishan (1959)). The identification of rents by zone affords the possibility
of a partial spatial equity analysis of benefits in addition t the equity considerations around the change in
consumer surplus identified above. Of course, with zero transport costs all benefits are rent. The presence
of rents greater than those suggested by perfect competition may be a measure of agglomeration benefits
accruing to some areas. This will need to be explored in a spatial analysis but such excess benefits should
not be double counted with rents. It should also be noted that such excess benefits will accrue to origins as
well as destinations. A thick labour market benefits both employee and employer. The fact that the perfect
competition baseline works will be of little comfort to proponents of perfect competition even as a datum or
yardstick since the uniform prior and indeed any biproportional baseline work equally well. The proof(see
Appendix) merely requires two unprescribed probability distributions as pre-multipliers in the model. In the
calibration and running of the model, there is no such latitude and the model must conform to the standard
constraints of the origins and destinations as usual.

The ability to model rents, which have a financial value means that an observable cash measure can be
compared with the globally estimated value of time. One might expect such a comparison to find spatial
variations in the value of time which would be of use in more accurate analysis and understanding of
movements. There may also be a divergence between the global values of time and those inferred from the
rents whose values are measured in the same units as trip cost and accordingly include measures of the
value of time. Aligning the two values would improve the integrity and consistency of the model. The rent
function for the ME model is similar to the accessibility function of Martinez (1995) and the adjustment of
this to the MMI measure may offer benefits similar to those found in the rent analysis.

The rents identified in the model are von Thünen rents and represent the value of land in terms which
depend upon its accessibility. Measured house prices reflect more than just land price although in urban
areas this may be the largest component. Nevertheless in comparing modelled rents with actual prices the
actual prices will need modification to take into account construction costs and some local environmental
variables.Much of the data now exists for this kind of analysis to be tackled at a fine grained scale (Chi et
al., 2021). The calculated rents offer a good opportunity to undertake their spatial analysis and their impact
on project evaluation. They also open up the possibility of a relatively cheap way of updating distribution
models between surveys since rent data is comparatively abundant and regularly updated. These potential
applications will be the subject of further study.

7 Conclusions

The Minimum Mutual Information model offers a good prospect of avoiding negative rents and uses a non-
arbitrary baseline derived from the model. This method also makes the model reproducible and will assist in
intercity comparisons. The rent in the Maximum Entropy model is given by λj

β whereas that in the Minimum

Mutual Information model is given by− lnpj−λ‘
j

β . In the second case the λ‘ value is effectively a correction to
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that rent value corresponding to a zero trip cost. The use of a non arbitrary datum gives greater reassurance
in the use of the derived rents in the determination of the size and distribution of costs and benefits. Where
generalised cost is measured in terms of time they also open up an approach to determining the value of
time from observed rents. The use of rents in calibration has already been explored(Morphet and Shabrina,
2020) but will be strengthened by the use of this method. We see that the method rules out negative values
but an analysis of the lowest values and their causes may be as important as the analysis of high values.
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A Appendix

A.1 The positivity of the rents

The rents in the MMI model are given by ,in the case of origins, − 1
β (ln(pi) − λi). We see immediately

that −ln(pi) is positive as pi is less than unity. In the Maximum Entropy model the rents are given by
− 1

β (λi) where if e−λi is greater than one the rent is negative. a balancing factor greater than one inflates the
corresponding trip matrix estimates and suggests a subsidy is being paid to maintain the balance of the trip
matrix to its marginal origins and destinations. This does not undermine the Maximum Entropy model in
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terms of trip estimates as it gives the same estimates as the MMI model where the rents are always positive.
In the Minimum Information model the balancing factors operate in the other direction so a balancing factor
less than one operates to reduce −ln(pi) which can be taken as a prior. We now show why this is so.

We consider two cases , first when the balancing factor is less than 1 and second when it is greater.

A.1.1 Balancing factor greater than unity

In this case we may write:-

e−λi > 1 (13)
∴ λi < 0 (14)

∴ renti = − 1
β

(ln(pi) − λi) > 0 (15)

A.1.2 Balancing factor less than unity

In this case we may write:-

e−λi < 1 (16)
∴ λi > 0 (17)

∴ renti = 1
β

(−ln(pi) − λi) > 0 ⇔ λi < − ln(pi) (18)

Thus we see that in the first case the rent is positive and in the second it is indeterminate. We can, however,
approach the second case differently by writing :-

e−λi < 1 and λi > 0 ∴
pi

e−λi
> 1 ∴ ln(pi) − λi < 0 ∴ renti = 1

β
(−ln(pi) + λi) > 0 (19)

Thus, in both cases the rents are positive. The argument applies for any prior probability and in particular
it applies to the uniform prior where pi = pj = 1

n ∀ i, j.
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