Preferred citation style

Axhausen, K.W. (2017) Chances and impacts of autonomous vehicles, *Seminar CASA, UCL*, London, September 2017.

.

Chances and impacts of autonomous vehicles

KW Axhausen

IVT ETH Zürich

September 2017

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acknowledgments

S Hörl for the work on AV simulation

P Bösch, F Becker and H Becker for the cost estimates

Meyer, H Becker and P Bösch for the induced demand work

Accessibility ~
Opportunities,
Speeds

Traffic is a system of moving, self-organising

Queues

The queues are the crucial short-term interaction between capacity, i.e. the

number of slots

for the desired speed and the

current demand

Travel demand (pkm) is a

normal good

i.e. it grows with

sinking "generalised costs"

The travellers chose their

average generalised costs

with their package of

locations (residence, work) and mobility tools

A person's travel demand is the

result of its activity participation

constrained by the currently

available time and money resources

When will they arrive?

On-going trials known to Accenture, February 2017

And maybe why not

Known hurdles

- Regulatory approval
 - Behaviour in dilemma situations
 - Restrictions to protect incumbents
 - Car manufacturers and service industries
 - Public transport industry
 - Taxi industry
- User acceptance
 - Reliance on taxi services
 - Acceptance of pooled taxi services
 - Replacement of the pride of ownership
 - Foregoing the mastery of the car

Known hurdles

- Non-user behaviour
 - Social norms for playing with AVs
 - Encoding social norms into the AV logic

- User behaviour
 - Number and extent of empty rides
 - Use for butler services (delivery, early positioning, etc.)

What are the current expectations?

What are the current expectations?

- AV will reduce the generalised costs (time perception, monetary costs)
- AV will reduce them further through (pooled) taxis
- AV will increase the number of slots
- AV will redistribute time by reducing shopping and pickup/drop-off trips
- AV (vehicles/drones) will undermine the existing retail services
- AV will make most of current public transport superfluous
- AV will enable a new wave of urban sprawl

Basic trade-offs

Basic trade-offs between supply and demand

- Costs for generalised cost (service) levels
 - Fixed costs
 - Ownership, taxes, insurance, repair
 - Management
 - Variable costs
 - Fuel, toll, parking, maintenance, cleaning
 - Promotion
- Generalised costs
 - Access/egress walk and waiting time
 - Speed (urban, longer-distance trips)
 - Quality of the ride (design, cleanliness, in-vehicle services)
 - Fares (pricing models)

Updated full cost/pkm estimate (current occupancy levels)

Private CarInd. Taxi Ind. Taxi Conv Autonomous Conv Autonomous Type of Car

Updated full cost/pkm estimate (current occupancy levels)

Updated full cost/pkm estimate (current occupancy levels)

Some scenarios for a 2030 Level 5 vehicle future

Facets

- Market structure (monopoly, oligopoly, dispersed)
- Role and extent of transit
- System target (system optimum, user equilibrium)
- Type of traffic system manager
- Road space allocation
- Share of autonomous vehicles
- Share of electric vehicles

Scenario 1: As before

- Dispersed: Current owners replace their vehicles
- Transit scaled down to the high capacity modes
- User equilibrium as system target
- Municipalities remain traffic system manager
- Road space allocation trends towards the AV, maybe even growth
- 100% share of small autonomous vehicles for safety reasons
- 100% share of electric vehicles for climate reasons

Scenario 2: Uber et al. take over

- Oligopoly of fleet owners
- Transit scaled down to the high capacity modes
- System optimum via tolls and parking charges
- Operators negotiate slots with each other
- Road space allocation tends towards the slow modes
- 100% share of mixed size autonomous vehicles for cost reasons
- 100% share of electric vehicles for climate reasons

Scenario 3: Local transit new

- Monopoly, the MVV expands into small vehicles
- Larger vehicles and hub-operations are encouraged
- System optimum routes are allocated over the days
- MVV is the traffic system manager
- Road space allocation unchanged
- 100% share of mixed size autonomous vehicles for cost reasons
- 100% share of electric vehicles for climate reasons

How to enable the mobility of low income travellers?

- Today
 - Public covers the fixed costs, especially for railways, but also busses
 - Across-the-board operational subsidies
 - Lack of means-testing
 - Low price season tickets/fares
 - Operational support via priority at signals and road space allocation
- Future, where each kilometre is tracked and chargeable
 - Income-adjusted rebates?
 - Income and work-distance adjusted rebates?
 - Fixed free kilometre budget ?

MATSim: An open-source agent based simulation

Simulation Framework: DVRP extension

Simulation Framework: DVRP further extensions

- Single & multi passenger trips
- Demand-responsive simulation
- Multiple operators

Full integration as 'public transport'

Excursus: Homophily in shared rides

Zhao, J. (2017) Urban Agenda for AV Deployment shared mobility, human interaction & urban creativity, presentation at *Future Urban Mobility Symposium 2017*, Singapore, July 2017.

•

Homophily in shared rides

What would be the generalised costs of matching riders according to their preferred social criteria?

Matching to

- Minimize the travel time of the shared AVs travelling
- Minimize the miles travelled of the shared AVs
- .Maximise the degree of the social match

Number of matches by extra waiting time and criteria

Travel time by matching criterion

Induced demand by AVs

Induced demand elasticities from a pseudo-panel

Accessibility	Share of mobiles	0.61
	Number of trips	0.44
	Trips per hour	0.24
	Out-of-home time	0.10
	Total distance travelled	1.14
Transport price index	Share of mobiles	-0.06
Transport price index	Share of mobiles Number of trips	-0.06 -0.19
Transport price index		
Transport price index	Number of trips	-0.19

CASA 17

2010 Switzerland general accessibility

Accessibility change for scenario 3/optimistic

Accessibility change for scenario 3/o with induced demand

Accessibility change for scenario 3/c with induced demand

What should we do next?

Next steps

- More work on acceptance of AV
 - By age and education
 - By location of residence
- More work on future cost/prices by type of operator
- More work on the efficiency of the fleets (empty kilometres, parking, drop off/pick up, rebalancing, dispatch)
- More work on how to achieve system optimum with fleet operators
- More work on future 'transit'?

Questions?

References

- Hörl, S. (2016) Implementation of an autonomous taxi service in a multi-modal traffic simulation using MATSim. Master Thesis, Chalmers University of Technology, Göteborg.
- Maciejewski, M., J. Bischoff, S. Hörl and K. Nagel (2017) Towards a testbed for dynamic vehicle routing algorithms, Accepted for presentation at the 15th International Conference on Practical Applications of Agents and Multi-Agent Systems, Porto.
- Bischoff, J., M. Maciejewski (2017) Simulation of City-wide Replacement of Private Cars with Autonomous Taxis in Berlin. Procedia Computer Science, 88, 237-244.