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Abstract 

 
In this chapter, we first review the development of employment location models as they 
have been developed for integrated models of land use transportation interaction (LUTI) 
where the focus is on the allocation of population and employment. We begin by 
sketching how employment models based on input-output and multiplier relationships 
are used to predict future employment aggregates by type and then we illustrate how 
these aggregates are distributed to small zones of an urban region in ways that make 
them consistent with the distribution of population and service employment allocated 
using spatial interaction-allocation models. In essence, the structure we are developing, 
which is part of an integrated assessment of resilience to extreme events, links input-
output analysis to the allocation of employment and population using traditional land 
use transportation interaction models. The framework then down scales these activities 
which are allocated to small zones to the physical level of the city using GIS-related 
models functioning at an even finer spatial scale.  
 
The crucial link in this chain is how we distribute detailed employment types generated 
from the input-output model to small zones consistent with the way population and 
services are allocated using the LUTI model. To achieve this, we introduce an explicit 
employment forecasting model in which employment types are related to functions of 
floorspace that they use. These are estimated using linear regression analysis which 
enables future predictions of their location to be scaled in proportion to the totals 
generated from the input-output framework. These future estimates of floorspace 
condition the supply side of the model, and combined with accessibility indicators, 
provide the heart of the employment location model. We have developed this model for 
London and its region – south east England – and after presenting the results of the 
model, we sketch how the integrated framework is being used to generate scenarios for 
future employment and population change. 
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Introduction 

 

Integrated land use transport interaction (LUTI) models originating from the notion that 

the spatial distributions of different geodemographic and economic activities define the 

way various processes of location operate in space. These are usually composed of 

activities that are coupled together in pairs with one activity determining another. These 

couplings form chains of activities that are sometimes entirely looped with no one 

activity taking precedence in the simulation, thus illustrating how urban activities 

determine one another simultaneously, but more usually, this chain is broken in some 

way, with specific activities being defined exogenously. In examining urban structure, it 

is not easy to determine where the causal chain of dependence can be broken but usually 

integrated land use transport models, define certain categories of employment, rather 

than population as being exogenous to the simulation, thus determining these variables 

in advance as initial conditions that drive the simulation. One of the most obvious 

distinctions is between employment which is clearly associated with export-orientated 

activities, and employment that is entirely dependent on population and other 

employment in the city. Export-orientated is usually difficult to predict with respect to 

the internal processes of location within the city, hence often being specified as 

exogenous to the simulation. This long-standing division is sometimes referred to as a 

distinction between ‘basic’ and ‘non-basic’ employment, which fifty years ago was the 

division between primary-manufacturing and service employment, but any division into 

activities that cannot be easily predicted and those which are easier to predict in terms 

of the particular city in question, are relevant to this definition. 

 

Since these types of spatially disaggregate models were first developed following 

Lowry’s (1964) pioneering model of Pittsburgh, there has been continued pressure to 

relax this distinction between exogenous and endogenous employment. Almost as soon 

as such model structures were generalised, the notion of building predictive models of 

different employment categories, traditionally considered exogenous, was broached. 

Putman (1983, 1991) was the first to develop explicit models of employment location 

which were embedded in land use transportation model structures, developing his 

EMPAL (EMPloyment Allocation) suite of models that essentially fused spatial 

interaction with land development, based on econometric estimation with the use of 
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accessibility potential functions reflecting spatial interaction in the manner first used by 

Hansen (1959). As with many LUTI models which have gradually moved away from 

their strict comparative static origins, the EMPAL model is now set within a semi-

dynamic incremental framework that involves variables lagged in time but most models 

of this kind are still largely calibrated using trial and error estimation rather than within 

any strict econometric framework. More recently, individual firm location models based 

on agent-based and microsimulation approaches have found favour in the context of 

LUTI models; but progress has been slow due to the immense data requirements 

required for such models and problems over providing rich enough input data for 

scenario testing (see Maoh and Kanaroglou, this volume, and Moeckel, this volume).  

 

Here we will focus on building an employment location model that is deeply embedded 

in the LUTI model where it is used to generate locational distributions that are used in 

other sectors such as residential and services location. This is then nested within a wider 

process of integrated modelling that embeds the LUTI model within a sequence that 

begins with demographic prediction, moves to aggregate employment prediction using 

input-output analysis and then predicts the employment distributions using simple 

regression. The results of this sequence are then used in the LUTI model which in turn 

generates predictions of population which are further scaled down to greater spatial 

detail using physical land development modelling based on GIS. The integrated 

assessment model was first developed for a project involving the evaluation of the 

impacts of long term climate change in the London region on the distribution of 

population and employment, particularly with respect to sea level rise over the next 100 

years. The various models involved in the sequence were designed and built by different 

groups with commensurate expertise in demographics, input-output modelling, LUTI 

modelling (which represents our own contribution) and fine scale GIS1 (Walsh, et al., 

2011). The integrated assessment is now being simplified and continued with a stronger 

focus on assessing resilience not only over the long term but over the short term where 

                                                 
1 The consortium involved in building the integrated suite of models comprised the University of 
Newcastle upon Tyne Earth Sciences group, responsible for the overall project, and for the transportation 
networks, GIS and flooding models, Cambridge Econometrics (University of Cambridge Land Economy 
Environmental group) responsible for the input-output model, and ourselves at CASA-UCL responsible 
for the LUTI model. Other groups at the Leeds University Institute of Transport Studies, Loughborough 
University Transport Group, and Manchester University Centre for Urban Regional Ecology were 
responsible for parallel pollution and energy studies. The project was organised under the auspices of the 
Tyndall Centre for Climate Change see http://www.tyndall.ac.uk/sites/default/files/engineeringcities.pdf  
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the emphasis is on the fracturing of urban networks and constraints on location of which 

climate and energy change are significant parts2.  

 

Here we will focus on the link between the input-output and the LUTI models, 

demonstrating the way we disaggregate the aggregate employment predictions for each 

employment type which emanate from the input-output model. These are then input to 

the LUTI model and various feedback loops are necessitated to ensure consistency and 

balance. In the next section, we discuss the sequence of aggregate, thence spatially 

disaggregate prediction in terms of the sequence of models used. We formally specify 

these models in generic and more formal terms, and then we develop the employment 

forecasting model that links the input-output and LUTI models. We calibrate this model 

to the London region (which nests the region used for the LUTI model – Greater 

London and the outer metropolitan area – within South East England) and we present a 

critique of the results. We then show how this model is used to couple the input-output 

and LUTI models together, commenting on potential feedback loops. We finally sketch 

possible scenarios with the model which are under current development and we 

conclude with an assessment of the state of the art in such modelling and suggest how 

this might be improved. 

 

 

The Integrated Model Framework 

 

The Generic Structure 

In essence, the model sequence takes aggregate estimates of employment E  and 

population P  for the region, and first disaggregates these into m  employment types 

mE  using demand from the population mH  for employment in these types. It organises 

these within an input-output framework and then allocates each employment type imE  

to zones i  of the urban region using the employment location model which is the main 

focus of this chapter. From these predictions, imE , it simulates the location of 

populations jP  associated with these employments using spatial interaction models 

which are coupled together to form the land use transportation interaction (LUTI) 

                                                 
2 ARCADIA: Adaptation and Resilience in Cities: Analysis and Decision making using Integrated 
Assessment, http://www.ukcip-arcc.org.uk/content/view/628/9/  
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model. This sequence is illustrated in the block diagram shown in Figure 1 which also 

indicates a number of key feedback loops that we will discuss in the following 

description. Before we do so however, we will describe the generic process that is 

implied in this structure. 

 

 

Figure 1: The Integrated Model Composed of Input-Output (I-O), Employment Location 
(EMP), and Land Use Transportation Interaction (LUTI) Models 

 

 

The main drivers of the model framework are aggregate quantities of employment and 

population with population broken down into household demand associated with 

employment types m . These are illustrated by the dark boxes in the block diagram in 

Figure 1. They are linked to each other through the usual input-output coefficients that 

determine how much of one employment type m  is used in the creation of another n  

and the resulting outputs – employment types mE  –  are then input to the employment 

location model. The supply side of the urban system is driven by floorspace and travel 

cost variables which determine the attraction of locations and the deterrence to 

travelling between them. The employment models generate employment types in small 

zones imE  and these are distributed to residential zones using the residential location 

model which in turn generates population in zones j , jP , from which the demand for 

service employment is generated. This is a final demand, consistent with one type of 
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employment in the input-output model. This is constrained to the total required but all 

the service demand model does is distribute this quantity to the zones of the system. 

 

The population and service demand models form the heart of the LUTI model although 

it might be argued that the employment model is also part of this extended framework 

despite the fact that in Figure 1, we show them as distinct from one another. There are 

many possible feedbacks in the system. First there are land and floorspace constraints 

on the generation of activities. Once employment and population have been predicted, it 

is possible to work out their associated land and floorspace requirements. If floorspace 

differs as it is likely to do so, it is possible to change the floorspace inputs to the 

employment and LUTI models and reiterate this sequence. If land supply constraints are 

breached which in turn are fixed by the subsequent GIS model which translates the 

employment and population activities to a finer spatial scale, then these models are also 

reiterated. Trip distributions are also central to the logic and these are assigned to the 

underlying networks; if capacities are breached in terms of such assignments, then 

travels costs are changed to reflect congestion and the model is reiterated to meet these 

constraints. These various loops, the exogenous (dark blocks in Figure 1) and 

endogenous variables (light blocks in Figure 1) and those that act in both ways (the 

stippled blocks in Figure 1) indicate the flow of simulation in Figure 1 with respect to 

various components of the integrated framework. The iterative loops that are used to 

balance the structure and bring the three models (I-O, Employment Location, and LUTI) 

into equilibrium are given by the broken lines and arrows. 

 

The Input-Output Structure 

Aggregate demand for population or employment is usually simulated using a linear 

structure in which exogenous demand X  drives endogenous demand Y which is usually 

taken as a function of total or final demand Z . We can write this equation as 

YXZ   and if we consider the function of total demand to be ZY  , we are able 

to write the equation for total demand as 

 

ZXZ    ,      (1) 

 

which simplifies to 
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 1)1(  XZ  .      (2) 

 

1)1(    is the multiplier effect that scales exogenous to total demand. There is nothing 

in this structure that tells us what is total, exogenous or endogenous demand. It depends 

on the formulation of the problem. In traditional LUTI models, which are embedded 

within a loose input-output structure, demand is usually defined in terms of employment 

activities with Z  as total, X  export-orientated or basic, and Y services or non-basic 

employment dependent on the level of total employment. However in a traditional 

input-output framework, it is often argued that the exogenous input which drives the 

model is the demand by the population for employment which is usually called final or 

household demand, with the employment being that supplied to meet this demand. This 

difference in orientation implies that such linear input-output structures can be oblique 

to one other, and their precise form depends upon the way the system and problem are 

articulated. 

 

In fact, the models in this integrated structure are what we might call ‘loosely-coupled’ 

in that different groups are responsible for their design and construction. The input-

output model is a conventional structure where household demand drives employment 

structure rather than exogenous inputs of employment driving the resulting total 

employment. The model is part of a suite developed by Cambridge Econometrics and 

the one used for this application is disaggregated by UK regions with the East, London, 

and South East England representing the focus for the predicted employment structure3 

(Junankar, Lofsnaes and Summerton, 2007). It has not been possible to restructure the 

input-output model to reflect exogenous employment but in any case, in this 

application, it is preferable to consider future changes in household demand as having 

more significance with respect to the climate change scenarios which lie at the core of 

the application. Moreover it is somewhat easier to predict household demand than 

employment demand. Although our treatment here is generic and not quite the precise 

form that is used, the model is structured along the following lines.  

 

                                                 
3 http://www.camecon.com/ModellingTraining/suite_economic_models/MDM-E3/MDM-
E3_overview.aspx  
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The model is formulated in terms of predicting total demand for employment in 

category m , mE , from the final household demand for employment in each category n , 

nH , which is calculated as  

 

nnn PPH 11     ,     (3) 

 

where n  is the ratio of employment in category n  to total employment E ,   is an 

activity rate defined as EP /  and nP  is the actual household demand measured in terms 

of population. We then define the coefficients of dependence between the employment 

sectors as mn  and the input-output equation can then be written as  

 


n

nmnmm EHE    .     (4) 

 

We can write the equivalent of the multiplier relationship in matrix form as 

1)(  ΛIhe  where e  and h  are appropriate row vectors for mE  and mH  and 

1)(  ΛI  is a matrix inverse where I  is the identity matrix and Λ  the matrix of the 

technical coefficients mn . Equation (4) predicts the employment by category/type 

which is then input to the employment location model that scales these quantities to 

employment in zonal locations imE  which we will sketch in the next section. 

 

The Employment Location Model 

Before we introduce the model, it is worth noting that there are several developments of 

LUTI models that extend the spatial interaction structure of these models to embrace 

spatial interactions between different employment sectors; in short, disaggregating the 

classic input-output model in equation (4) into zonal as well as sectoral categories. 

Following earlier work by Macgill (1977), one of the authors (Batty, 1986) has 

developed a generic framework for this but the one that is being currently used in 

operational practice is the extended MEPLAN model which is built around a spatially 

disaggregate input-output structure (Echenique, 2004). In fact, Echenique’s model is 

rather more general than any of those that we have detailed here in that he defines two 
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types of sector – production and consumption, or supply and demand, not specifying 

formally whether these sectors are measured in terms of population or employment. The 

model as it has been applied, defines production as employment and consumption as 

household demand, measured in units of employment and thus this structure is similar 

to the input-output model used here. As the model is iterative in structure, what begins 

the process can be either inputs or outputs and there are many possible variants. 

However, the key difference is that the model structure here separates aggregate 

predictions for employment from their spatial allocation which in turn are separated 

from the residential and service locations and interactions. In the Echenique and related 

models, all these stages are fused. 

 
For the rapid assessment of scenarios, we need to develop a model whose independent 

variables are relatively easy to forecast in their own right. To this end, we first predict 

floorspace as a linear function of various independent variables that are easy to specify 

for future scenarios and then use these predictions of floorspace to produce employment 

by category and location using a second linear prediction model. Immediately an issue 

arises as to the transmission of errors in this two stage process but although error is 

clearly passed on from the first to the second models, both models are heavily 

constrained to lie within certain limits. It is not possible in these kinds of model to work 

with negative quantities and moreover, we need to make sure that the total employment 

which is predicted for each category sums to the known totals generated from the input 

output model. These complicate the structure and in general, compromise the strict 

statistical interpretations of the model fits. 

 

To provide some sense of these two models, the first activity that is predicted – 

floorspace iy  say – is estimated as a function of various independent variables igx  

where the coefficients go aa ...  are estimated using least squares regression. These 

variables are then input to a second regression which predicts an employment category 

iz  as a function of another set of independent variables igv  with coefficients go bb ...  

and the floorspace variable from the first stage iy  where   is the appropriate weight 

from the floorspace model. These two models are written as  
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
g

iggi xaay 0    ,    (5) 

i
g

iggi yvbbz   0  . .    (6) 

 

It might be remarked that these equations could be collapsed into one but at each stage 

we constrain the estimates to meet minimum values that are greater than or less than 

zero. There are two ways of doing this. First if the estimates that are below zero are 

small in number and value, we simply exclude the variable from the model and replace 

the value of the predicted floorspace or employment by its observed equivalent. That is, 

for equations (5) and (6) respectively 

 

    then   0   If iii yyy        (7) 

    then   0   If iii zzz   ,     (8) 

 

where the primed variable denotes the predicted value and the non-primed variable the 

observed value. The second method is to simply scale the value by adding the minimum 

value to each prediction; that is 

 

iii yyyy  


 min   then   0any   If     (9) 

iii zzzz  


 min   then   0any   If  .   (10) 

 

In fact we have used the first method for the first model whereas for the second model 

where we predict employment by category, we scale the estimates so that the sum of 

these employments meet the predetermined input-output totals. 

 

We can now state the model as follows. First we predict the floorspace imF   associated 

with employment category m  as 

 









 
0,

0,0

imimim

im
g

iggim

FifFF

FifxaaF
 ,   (11) 
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and then we use this floorspace to predict the employment in category m  as imE   from 

 










 
0ˆ,ˆ

0ˆ,ˆ
0

imimim

imim
g

iggim

EifEE

EifFvbbE 
  . (12) 

 

The final employment location is scaled to ensure that 

 




m
im

im
mim

E

E
EE

ˆ

ˆ
 .      (13) 

 

Equations (12) and (13) that define the model are applicable to each employment 

category associated with the input-output model. When we detail the calibration below, 

we will present the actual independent variables and categories used. 

 

The Land Use Transportation Interaction (LUTI) Model 

We can state the land use transportation models quite succinctly. We allocate 

employment imE  to residential areas using a spatial interaction model that computes the 

work trips q
ijT  by travel mode q  from workplace zone i  to residential zone j  as a 

function of the residential floorspace jR , the modal travel cost q
ijc  from i  to j , and the 

friction parameter q . We state this model as 

 

  


















q

q
i

q

q
ij

q
j

m
im

q
ij

cR

cR
ET

)exp(

)exp(




 .   (14) 

 

Note that the script   is used throughout the text as a floating index pertaining 

summation over zones, employment sectors or floorspace types to make a distinction 

from the actual flows or volumes. Population in zone j  is computed by summing trips 

over modes q  and employment zones i  and scaling the result by the activity rate   as 
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
i q

q
ijj TP    .     (15) 

 

We now compute the demand for employment in category n  at zone c  as a function of 

the household demand in j , thus repeating in some way the sort of structure that is 

represented at both the input-output and employment location models stages. Then  

 

  








q

q
j

q
n

q
jc

q
cn

jn
q
jcn

cF

cF
PS

)exp(

)exp(




  .    (16) 

 

where the service centre zone is notated as c , n  is the employment demand coefficient 

for category n  and q  the modal friction parameter. We are then able to predict the 

employment of each category in zone c  by summing equation (16) over j  and q  as 

 


j q

q
jcncn SE   .     (17) 

 

We see an immediate simultaneity in equations (14) to (17) where an element of the 

employment input which we take from the prior employment allocation models is also 

predicted by the LUTI model. Strictly this leads to iteration over equations (14) to (17) 

until balance occurs (Wilson, 1970). However what we effectively do is divide the 

categories of employment into two sets: those that we consider cannot be predicted as a 

function of population which is akin to true exogenous employment in the traditional 

basic sense, and employment in that category that is clearly a function of population – 

in short, service or non-basic employment. 

 

Essentially we apply equations (16) and (17) to the retail category of service 

employment, that is employmentretailn   and we aggregate this to one class. 

Employment which is not retail employment is predicted using the employment location 

model in the previous section and thus the two employment models are quite separate. 

However within the overall structure, there exists the potential for iterating between the 
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LUTI and employment location models if this appears appropriate. Other loops 

involving these various models relate to a) capacity constraints and b) locational 

attractors. First there are capacity constraints on the floorspace and land areas consumed 

by population and employment. We convert population and employment into residential 

and commercial floorspace as jj PR   and cncn EF    where   and   are appropriate 

conversion coefficients. Then if max
jj RR   and max

cncn FF  , we scale these attractors to 

produce less activity in the next iteration of equations (14) to (17). This reduces the 

attraction until the constraints are met. We should note that these floorspace variables 

are also used in the employment location model and thus another iteration can be set up 

which involves both the LUTI and its precursor, the employment model. Finally if the 

trip distributions q
ijT  and q

jcnS  exceed their link capacities, this sets up yet a further 

iteration which involves ensuring that these link capacities are met and this involves 

altering the travel cost matrices accordingly. There are many possible loops of this kind 

and we are exploring all of these within the wider project (Batty et al., 2011). 

 

 

Applications to London and South East England 

 

Defining the Regional Model and Classifying Employment  

Our suite of integrated models is being developed for the urban region comprising 

Greater London and the Outer Metropolitan Area which is a region containing 6.82 

million (m) jobs and 13.42m population. It is broadly circular whose radius varies 

between 40 and 50 miles from central London. It includes all the major London airports 

and green belts but does not extend to include the university towns of Oxford and 

Cambridge, the new town of Milton Keynes, or the south coast ports and resort towns. 

This region however cuts across three official English regions – London, the East, and 

the South East – and this complicates the employment modelling for the input-output 

model is built at this regional level. The employment model which disaggregates these 

regional totals for the finer scale population zones is thus built for these three regions 

which we refer to as the Greater South East Region. This larger region is about twice 

the size of the actual LUTI model region with a population of 20.56m and employment 

of some 10.09m (which is composed of 3.84m in London, 2.82m in the East and 4.15m 
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in the South East). The LUTI model region is composed of some 1767 zones based on 

wards and this is nested within the larger employment model region which contains 

some 3202 zones. The zoning systems for the three models are illustrated in Figure 2. In 

fact it is worth noting that the ratio of population to employment – the activity rate   – 

in the larger region to the smaller is quite close, 1.967 compared to 2.038 which 

indicates that the London region is only slightly more active than its wider periphery. 

 

 
Figure 2: The Input-Output, Employment and LUTI Model Regions 

 
Left: the three regions used in the I-O and Employment models, with the inset → Right: the London and 
Outer Metropolitan Area, with the Greater London Authority area (mid grey), Inner London (dark grey) 
and the Central Boroughs (black) nested within one another. 
 

To achieve consistency between the input-output and the LUTI models, the employment 

model will be developed for the larger region but only applied to the smaller region 

which is a proper subset of the larger without any iterative couplings between the 

sectors. In short this is only possible because the employment model is composed of 

separable and distinct sectors. We now need to define these sectors. There are 42 sectors 

in the input-output model including miscellaneous but to give an idea of what the region 

would look like if employment were distributed uniformly between these sectors and 

over all 3202 zones, we would only have 75 employees in each sector in each zone. In 

short, many of these sectors are far too small to be capable of being simulated in 

locational terms. 24 of these sectors or about 60% account for only a tiny fraction, some 
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5% of the employment, and we thus need to collapse these according to some obvious 

logic that takes account of their magnitude and spatial distribution. The services sector 

in this region is enormous and constitutes over 80% of all employment. Many of these 

services are highly clustered. 2% of all employment, each in different types, is in just 4 

categories x zones which is 0.001% of the number of categories x zones while 10% of 

all employment is located in just 0.01% of the categories x zones. Indeed if we plot the 

spatial distribution of employment across the larger region, it is very clear that this is 

highly polarised with some 10%, 20%, 30% 40% and 50% of all employment in 0.4%, 

1.5%, 3.6%, 6.9% and 11.6% of all zones. This is far more extreme than the oft-quoted 

skew distribution of income which suggests that 80% of all wealth is in the hands of 

20% of the population (the so-called 80-20 rule which describes the long tail).. 

 

A good measure of inequality of the distribution of employment is given by the entropy 

function defined as 

 

E

E

E

E
H i

i

i log        (18) 

 

which varies from 0 to a maximum value of 3.505)3202log()log( n , where 0 

denotes a situation where all employment is in one zone and )log(n  a situation where 

all the employment is evenly spread. A measure of inequality is given by the 

redundancy which is defined as  

 

)log(
1

)log(

)log(

n

H

n

Hn
R 


       (19) 

 

which varies from 1, complete inequality to 0, complete uniformity or equality. The 

entropy H  in the employment distribution is 3.179 and thus the redundancy R  is 0.093, 

apparently much closer to uniformity than extreme inequality, notwithstanding the 

apparently highly skewed nature of the distribution. In Figure 3, we show the 

employment distribution in terms of its rank size in both its raw and its log transformed 

plots and it is clear that there is substantial polarisation. But given the number of zones, 

this distribution is moderated by the fact that there is employment in all zones, hence 
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the value of the redundancy statistic. Were we to aggregate the zones, the distribution 

would become more extreme. 

 

 
Figure 3: Inequalities in the Employment Size Distribution by Ranked Locations  

 
 
Another perspective on the structure of employment in the region and one that is 

required in grouping the 42 sectors from the input-output model into a more manageable 

and representational set of classes involve examining the clustering of employment 

types. The services sector is enormous constituting over 80 percent – manufacturing and 

transport only 10 percent, and thus we need to disaggregate different kinds of services – 

financial and business and probably IT from retail and from public services. It is clear 

that the locational demands of these various services are quite different as our analysis 

of clustering reveals. A good measure of spatial clustering is the Getis-Ord G statistic 

(Getis and Ord, 1992) which essentially determines how close a particular activity in a 

particular zone is to all other activities of that type in all other zones. This statistic has 

been computed for all the zones in the system with respect to each of the 42 categories 

of employment that are defined in the input-output model. We use an inverse distance 

weighting with a 7 mile radius cut-off to encapsulate relevant zones near to those which 

we consider clusters might appear in. The observed employment at zonal (ward) level is 

taken from the Annual Business Index from the Office of National Statistics which is a 

10% yearly sample, and we combine multiple years (2005-2007) to produce reliable 

estimates of the actual distribution. 

 

The distribution of these cluster statistics for the 42 sectors is highly polarised and we 

use these to provide indicative measures of the extent to which sectors need to be 

specific. The largest cluster values which are more than twice the average are of two 
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kinds: banking and finance, large in employment, and specific one-off activity locations 

such as oil, gas and water utilities which tend to be rather small in employment. 

Banking and finance are heavily concentrated in the core of the region. The second less 

intense set of clusters involve professional, miscellaneous, public, and hotel-restaurant 

services which form more diffuse clusters. These are still concentrated in Greater 

London but are much larger in scale constituting some 1.5m jobs in the region. In short, 

we see two kinds of services – those which are very niche and concentrated in the core 

and those which are concentrated in urban areas which define the polycentric structure 

of towns that form the wider region but are spread more diffusely as the population is 

spread throughout the region. One-off locations do also lead to clusters but it is very 

clear that many of the clusters are heavily orientated to the size and scale of the 

agglomerations of population in the region. In terms of other significant but smaller 

groups, only about 5% of employment is in manufacturing which is about the same as in 

transport, with the transport activity concentrated around airports and central city hubs. 

Utilities, primary industry and construction are much more idiosyncratic in their 

locations, either spread fairly evenly in association with population or in very small 

one-off concentrations. In fact the scale of this activity is so small and the locational 

requirements so diffuse or special that we will treat these sectors rather differently as we 

illustrate below when we design the employment models. 

 

In summary then, clustering is either caused by the agglomeration of activities in 

attractive business areas (overwhelmingly in central London), or the clustering of 

activities within and around large facilities such as airports and industrial parks. As we 

have noted, the most highly clustered activities are finance, with insurance closely 

behind, and these activities are dominant within Central London and thus good 

contenders to be aggregated together. Business services are significantly less spatially 

clustered and, while still centralised, are not concentrated to the same degree in central 

London, and thus should remain separate. In terms of clustering at large facilities, this 

can be seen in the air transport, which is highly clustered, overwhelmingly around 

Heathrow in outer London. Motor vehicle, electronic and textile manufacturing are 

moderately clustered, and are located in outer London and the wider region. The 

majority of manufacturing activities however do not show high degrees of clustering. 

The sub-regional geography also indicates some misclassifications in the proposed 

groups. Oil and gas is concentrated in central and inner London, and is surely service 
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jobs rather than primary sector activities. Similarly the high degree of printing and 

publishing jobs concentrated in inner London shows that these are service jobs, rather 

than manufacturing. These groups need to be split into their component parts or simply 

classed in a service group, as the service proportion is likely to greatly exceed the 

manufacturing proportion. The utilities groups are highly clustered, and are located 

mainly outside Greater London. Construction jobs are not clustered, and other than air 

and water transport, other transport jobs are also widely spread. 

 

 

Figure 4: The Distribution of Employment Groups for the Location Model 

 

A process of to-ing and fro-ing in examining these patterns led us to aggregate the 42 

sectors from the input-output model to 10 distinct sectors which we define in terms of 

their size as Public Services (30%), Retail Services (24%), Business Services (17%), IT 

Professional Services (9%), Manufacturing (6%), Financial Services (5%), 

Transportation (4%), Construction (4%), Primary Sectors (<0.5%), and Utilities 

(<0.5%). We show these in terms of employment totals in the bar graph in Figure 4, 

from which it is quite clear that the ‘services’ categories completely dominate the region 

with 84% of the activity in these groups. Although we do not show this here for the 

region, this mirrors the polarisation of employment that we commented on above as 

implied by Figure 3. As a structure for the ten sectors, it represents as good an 

aggregation reflecting all these diverse factors as we are likely to get. It is on this basis 

that we have developed the employment location model. 
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Specifying and Fitting the Floorspace Location Models 

Of the ten sectors, four have very little spatial similarity to the other six which are the 

core sectors. In fact for each one of these four, they do not have any cross-correlations 

with any of the other nine sectors with values greater than 0.4 and most are below 0.1. 

Of the remaining six sectors, all the service sectors are highly correlated with one 

another, in contrast to the manufacturing sector which is spatially quite distinct. We 

now define these sectors in terms of employment kE  where we use the index k  to 

distinguish these new sectors from the original 42 input-output sectors nm, . In terms of 

possible explanatory variables, in particular floorspace, these six sectors have quite 

strong relationships with the three kinds of floorspace, each having a correlation of at 

least 0.66 with total, industrial, retail and office floorspace. Another interesting feature 

of this data, is that of the two accessibility variables measured using population 

potential from Hansen’s (1959) measure for public and private transport networks, the 

correlations with these variables are all less than 0.2. This prompts us to compare these 

distributions with population itself and these correlations are also rather low, thus 

implying that the employment base is very different spatially from the distribution of 

population. The relevant comparisons between employment and floorspace categories 

shown as correlations are given in Table 1 where the key correlations are in bold italics 

(between the six sectors) and underscored for the floorspace comparisons. 

 
 
Table 1: Correlations (x100) between Six Key Employment Sectors and Floorspace 
 

 
 

 
 

Manu-
facturing 

 
IT 

Services 

 
Financial 
Services 

 
Business 
Services 

 
Public 

Services 

 
Retail 

Services 
       
 
Manufacturing 100 

     

IT Services 24 100     
Financial Services 5 42 100    
Business Services 18 81 46 100   
Public Services 16 65 25 71 100  
Retail Services 
 

33 
 

75 
 

33 
 

77 
 

67 
 

100 
 

 
All-Floorspace 

47 75 49 78 65 81 

Retail-Floorspace 23 59 26 63 59 85 
Office-Floorspace 14 79 65 89 71 72 
Industrial-Floorspace 66 18 2 11 10 29 
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As we noted in the previous sections, the employment model which is based on 

predicting the employment in each of these six sectors is divided into two stages. 

Clearly from Table 1, correlations between employment and floorspace are quite high 

and as floorspace is a critical supply side variable that can be manipulated to determine 

future scenarios that we might test, we decided to first build a predictive model of the 

three floorspace categories in Table 1, without the global category All-Floorspace which 

is in fact the sum of Retail-Floorspace, Office-Floorspace, and Industrial-Floorspace. 

This first model uses these various measures of floorspace as independent variables 

together with a series of other variables that reflect other key factors that appear 

important. In fact we used a stepwise procedure to generate the best set of variables for 

the three categories. The other variables are of two kinds; accessibility to existing 

office, retail and industrial floorspace (to generate clustering and agglomeration effects) 

where the attractor is the relevant floorspace variable, general accessibility to 

population, accessibility to particular infrastructure facilities such large airports based 

on network travel time to the facility; and then potential space for urban development, 

such as existing land for commercial uses which is linked to agglomeration and 

brownfields redevelopment potential, and open space with potential for development. 

This was calculated as total greenspace less protected greenspace crucial to existing and 

future planning policies.  

 

Our initial models regressed the three categories of floorspace (which we now define as 

z
jF , 1z : retail floorspace, 2z : office, 3z  industrial) in different combinations 

of these variables and we immediately found that there were strongly contrasting 

patterns for urban and rural areas. These differences were difficult to capture in a single 

regression model with low values of the variance explained. This problem was tackled 

by introducing two sets of dummy variables in of each floorspace models. The objective 

of the first set is to differentiate wards with no commercial floorspace (isolated rural 

wards) from those with commercial floorspace (urban wards) and those with high 

commercial floorspace (town centre wards). The objective of the second set is to include 

the distinct conditions in Inner London and this is achieved by introducing three 

different subregional effects that partition the region into three distinct sets of areas 

based on nearness to the central core. The models which were ultimately selected 

incorporate these dummies and this does weaken the model’s ability to generate 
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completely new urban developments in rural areas. Arguably the majority of such 

development takes place at ‘seed points’ in small settlements that become towns, and on 

brownfield sites that are redeveloped and thus this should not be a major shortcoming. 

The three models that have been fitted are variants of the generic structure that follows: 
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where the coefficients 11...aao  are the usual regression weights that imply a degree of 

significance for the variables to which they are ascribed, s  and f  are the coefficients 

of the dummy variables 
j  which take on values of 0 or 1 for specific zones. The three 

dummies associated with s , 3,...,1  are those for the three subregional effects noted 

above while the two dummies associated with f , 2,1  are those which determine 

thresholds on the relevant floorspace category. jjjjj
z
jjj MQHGTADB ,,,,,,, are 

respectively non-domestic buildings, domestic buildings, accessibility to floorspace of 

type z , accessibility by public transport to population, both based on Hansen’s (1959) 

potential measure, greenspace, distance to Heathrow, distance to other airports, and 

distance to major motorway junctions. This model has been fitted to the three floorspace 

distributions and the results are presented in Table 2.  

 

The performance of these models is quite good. Some 70 percent of the spatial variation 

over a very large region with many small zones is good enough for forecasting purposes 

where we are very largely concerned with specifying future changes in floor space in 

‘what if’ contexts. Moreover we will use these models as inputs to the employment 

model where we will bring other variables to bear as well as these various constraints on 

ranges of values that we indicated in an earlier section. It is to these models that we now 

turn. Concern about error propagation is worth noting but the rather inelegant fitting and 

manipulation of these models is achieved in the context of a deeper learning about the 

region. 
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Table 2: Estimates (and Standard Errors) for the Three Floorspace Models 
 

Independent Variable Retail 

Floorspace }{ 1
jF  

Office Floorspace 

}{ 2
jF  

Industrial 

Floorspace }{ 3
jF  

Constant 0a  
 

-3992.257 
(908.641) 

 
-13763.129 
(2517.158) 

 
-21825.274 
(2465.222) 

Retail Floorspace 
1
jF  na 

0.771 
(0.034) 

-0.138 
(0.026) 

Office Floorspace 
2
jF  

0.125 
(0.005) 

na 
-0.162 
(0.012) 

Industrial 

Floorspace 3
jF  

-0.023 
(0.008) 

-0.278 
(0.021) 

na 

Nondomestic 
Building jB  

56.984 
(5.640) 

226.331 
(15.232) 

450.912 
(8.434) 

Domestic Building jD  25.062 
(4.198) 

na 
-23.834 
(8.604) 

Access to Retail 

Floorspace 1
jA  

0.070 
(0.004) 

na na 

Access to Office 

Floorspace 2
jA  na 

0.045 
(0.003) 

na 

Access to Industrial 

Floorspace 3
jA  na na 

0.125 
(0.005) 

Public Transport 
Accessibility jT  na 

128.338 
(33.297) 

47.792 
(14.114) 

Greenspace jG  -0.149 
(0.018) 

-0.173 
(0.050) 

-0.364 
(0.037) 

Time to Heathrow jH  na 
-121.947 
(38.358) 

na 

Time to All Airports 

jQ  
27.001 
(7.939) 

-178.775 
(58.570) 

na 

Time to Motorways 

jM  na na 
-74.595 
(32.856) 

Subregional Effect 

Core 1
j  

-89153.674 
(5057.273) 

94686.907 
(15593.312) 

-62219.581 
(8014.538) 

Subregional Effect 

Inner Areas 2
j  

-29533.271 
(2213.944) 

-56162.792 
(5268.918) 

-60027.959 
(3446.372) 

Subregional Effect 
Outer Areas 3

j  
-6657.748 
(1065.701) 

-12246.272 
(2551.055) 

-27674.705 
(2273.093) 

High Impact 
Floorspace for z  

111907.227 
(2580.984) 

69355.676 
(6664.709) 

na 

No Impact Floorspace 
for z  

-6583.713 
(958.500) 

na 
 

na 
 

Correlation Squared 
0.719 

(14712.458) 
0.677 

(41189.450) 
0.679 

(29902.481) 
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The Employment Location Models 

As we argued above, we do not intend to develop separate models for all ten sectors of 

employment. Four of these sectors – the primary, utilities, construction and transport 

sectors are too specific in their locational requirements, too diffuse across the region, 

and/or simply too small to be significant for such forecasting. When we forecast the 

future locations of these sectors, we will simply scale them to their baseline values at 

2005, the year at which the employment models have been calibrated and for which data 

exists, or we will pre-specify their values in terms of the scenarios we develop; or more 

likely a combination of these two strategies will be used.  

 

The six sectors k  that we formally model are all functions of their relevant floorspace 

which has been modelled in the previous section. We also add a number of key 

variables based on accessibility and travel time/distances to these models, developing a 

generic form that is applied differentially to each sector dependent on what we consider 

to be significant causal drivers of their respective locational patterns. The model is 

similar to that for floorspace and we state it as 

 

 
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109876540
z

jjjjj
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j

PT
j

z
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          (21) 

 

where 6,...,1, kE jk  or k={financial services, manufacturing, IT services, business 

services, retail services, and public services}, 100 ...bb  are the respective regression 

coefficients, PT
jA  and R

jA  are the public transport and road accessibility potentials for 

the respective employment variables, jJ  is distance/travel time to rail hubs, and jh  is 

the distance/travel time to A-Class roads. All other variables are as defined previously.  

 

Even though the employment models are largely driven by floorspace from the previous 

model, and observed floorspace is used to fit the models in equation (21), these are also 

functions of the various accessibility potentials and direct distance measures to 

facilities. The generic Hansen (1959) measure k
jA  is defined for an activity k  in zone 

j  as 
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 2 ij
i

ik
k
j dEKA        (22) 

where we show these as accessibilities to employment type ikE  and where the 

distance/travel time ijd  is that associated with the particular mode of travel, that is 

public transport PT  or car/road transport R . To provide some sense of the distribution 

of these variables, we show three accessibility patterns for the Greater South East 

Region in Figure 5. In Figure 6, we also show the distribution of employment for the ten 

categories, six of which we are modelling using equation (21). It is clear that for the 

distributions we are not intending to model, the patterns are much more diffuse than 

those for the services and manufacturing that we are modelling. These latter 

distributions are very highly concentrated and the affect of the accessibility variables in 

equation (21) is to diffuse these concentrations a little when these variables are 

embedded into the employment model. 

 

     
   Access by Public Transport    Accessibility to Airports    Accessibility to Motorways 

 
Figure 5: Sample Accessibility Surfaces Computed Using Various Weighted Indices 

 

 

In Table 3, we present the results of fitting the six models. The performance of these 

models is good and we have included only those variables which are significantly 

different from their exclusion from the models at the 5% level. There has been 

considerable to-ing and fro-ing in developing these models, examining regional 

distributions such as those in Figures 5 and 6, and then examining significance and the 

causal logic of activities and indices that might be related to one another. In terms of 

Table 3, each of the categories is associated with its most immediate floorspace – that  
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Primary Sector                       Utilities                                   Construction                           Transport                               Manufacturing 

         
IT Services                             Financial Services                  Business Services                   Public Services                       Retail Services 
 

Figure 6: The Distribution of the Ten Employment Types Across the Greater South East Region 
(Readers should zoom in on these figures to extract the detail: the figures are located at 

http://www.complexcity.info/the-scale-project/)  
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Table 3: Estimates of the Coefficients and Performance of the Employment Location Models (Standard Errors in (•)) 
 

 

 
Financial 

Services }{ 1jE  

 

Manufacturing 

}{ 2jE  

IT Services 

}{ 3jE  

Business 

Services }{ 4jE  

Retail Services 

}{ 5jE  

Public Services 

}{ 6jE  

 
Constant 0b  

-405.715 
(61.877) 

44.992 
(14.903) 

333.043 
(40.553 

268.647 
(40.092) 

113.798 
(60.795) 

1145.055 
(70.777) 

Retail Floorspace 1
jF  na na na na 

0.054 
(0.001) 

na 

Office Floorspace 2
jF  0.011 

(0.000) 
 

0.010 
(0.000) 

0.023 
(0.000) 

na 
0.019 

(0.000) 

Industrial Floorspace 3
jF  na 

0.005 
(0.000) 

na na na na 

Employment Accessibility (within 25 
minutes by public transport) 

-4.408 
(0.222) 

na 
1.069 

(0.117) 
2.721 

(0.185) 
0.791 

(0.095) 
2.843 

(0.251) 

Employment Accessibility (within 25 
minutes by road) 

0.461 
(0.015) 

na 
-0.086 
(0.008) 

 

-0.188 
(0.013) 

na 
-0.287 
(0.017) 

Time to Motorway Junctions jM  23.519 
(3.491) 

na 
-4.617 
(1.354) 

-7.140 
(1.990) 

-13.383 
(2.805) 

-7.971 
(2.732) 

Time to Rail Hubs jJ  na na na na 
29.918 
(6.472) 

-34.275 
(9.126) 

Time to Heathrow Airport jH  na na 
-1.656 
(0.693) 

na na na 

Time to Nearest A-Class Roads jh  na 
-4.709 
(1.565) 

na na na na 

Time to All Airports jQ  -5.593 
(2.109) 

0.870 
(0.364) 

na na 
-3.846 
(1.705) 

na 

 
Correlations Squared 
 

0.637 0.653 0.795 0.899 0.826 0.713 
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is financial, business, IT and public services with office floorspace, retail with retail 

floorspace and manufacturing with industrial. Manufacturing is only associated with A-

Class road and airport accessibility, while the other five services sectors are influenced 

by accessibility to motorways, and accessibility to public and car/road transport (with 

the exception of retail which is only public transport). Access to Heathrow airport 

appears to only influence IT services, while retail and public services are influenced by 

access to rail hubs. All this seems to make sense although there is substantial correlation 

between the various accessibility variables. In short, with the floorspace models, there is 

substantial implicit weighting through double counting. We make no apology for this, 

for we want to optimise the fit and as we will illustrate below, short of a perfect fit, we 

need to be very specific about how we use these models in prediction to reduce the error 

that is contained in the model estimates of the base year calibrations.  

 
 

Using the Employment Models within the Integrated Framework 

 

Error Propagation in Comparative Static Models 

Our model framework is in the comparative static tradition. The input-output, 

employment, and LUTI models are all estimated to a cross section of urban and spatial 

structure at the base year, in this case 2005. The various data that we use have culled 

from various series and censuses from 2001 to 2007 but we have normalised these to 

ground all the data in the common year. There is very little discussion of how to use 

cross-sectional forecasting models in predictive contexts. The notion of comparative 

statics which is an old concept in economics, is assumed to be one where a model of a 

system produces a static equilibrium and in forecasting, a new static equilibrium is 

assumed to occur at some point in the future where the actual change is the difference 

between the two equilibria. This, of course, assumes that whatever changes that take 

place in the future work themselves out to the new equilibrium by the end of the 

forecasting period. In short, it is assumed that any motions that take place between the 

equilibria are not required to be known for the prediction to be useful.  

 

Lowry (1965) in his seminal article on model design says of comparative statics: “The 

process by which the system moves from its initial to its terminal state is unspecified. 
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Alternatively, comparative statics may be used for impact analysis, where no target date 

is specified. Assuming only one or a few exogenous changes, the model is solved to 

indicate the characteristics of the equilibrium state toward which the system would tend 

in the absence of further exogenous impacts”. In fact, Lowry (1964) in his Model of 

Metropolis, makes the further point that such comparative statics produces an instant 

metropolis, an emergent structure rather than the actual urban structure that we currently 

observe. It is on this premise that the baseline calibration of any comparative static 

model is ‘what would happen’ if the forces at work in the data describing the current 

urban structure were to work themselves out, rather than ‘what has actually happened’. 

This has a profound impact on how such models should be used in prediction.  

 

The problem with any model in terms of its calibration is that no calibration can give 

perfect estimates of the observed situation, whether it be a comparative static or a 

dynamic model. The problem is how the errors which are part of the calibration are to 

be treated in using the model in prediction. If one simply makes predictions with the 

same model that has been used in calibration, then these errors will be transmitted 

through to the future state. If the errors are greater than the differences that are 

associated with the future state, then what is error and what is new are completely 

confounded. Indeed, this is intrinsic to the entire prediction in that it will always be 

possible to find a forecasting period in which the overall change will be less than the 

overall error. It is somewhat remarkable that there has been so little discussion of this 

issue but in practice what is usually done is to generate differences rather than 

absolutes. In fact this is no easier with dynamic models that are fitted to differences than 

to static models that simulate the entire structure because both contain errors. It might 

even be argued that static models are preferable in that it is the difference between the 

two equilibria that is significant, and any prediction is then simply treated as a 

difference between the existing situation and the future state. 

 

We can give this situation more clarity in terms of the input-output and employment 

models which are both comparative static. Adding time to the variables, we define the 

total population at the base year time t  as )(tP  and total employment as )(tE . These 

quantities are external to the entire framework; in fact they can be predicted using 

aggregate demographic and employment models and one alternative we are considering 
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is to predict population using the MoSeS model (Birkin, et al., 2009). However 

assuming we have predictions of these totals as )1( tP  and )1( tE  at time 1t , then 

we clearly know the increments  

 








)()1()(
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tEtEtE

tPtPtP
  ,    (23) 

 

which may be positive of negative. These are net values, for population and 

employment may grow and decline in different areas and this represents an intrinsic 

problem to most modelling frameworks that accept exogenous totals of this kind. 

Nevertheless, the input-output model takes total employment at times t  and 1t  and 

generates totals )(tEk  and )1( tEk , the differences )()1()( tEtEtE kkk   also 

being either negative or positive.  

 

The employment model distributes these totals to the zones of the system, but before we 

broach the problem of dealing with net totals, let us consider the predictions of the 

estimated model at the calibration year )(tEik  and predictions at the same year but with 

input variables for the future year defined as )1:(  ttEik . Now the sum of these 

employments across sectors and zones equals observed total employment at time t  
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and to model where the increment of employment is located, we simply take the ratios 

)(/)1:( tEttE ikik   and apply these to the increment )(tEk . Then the employment 

model for each sector k  is  
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and the new employment at time 1t  is 
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)()()1( tEtEtE ikikik     .   (27) 

 

It is easy to show that these employments in equation (27) sum to the category totals 

produced by the input-output model. In short, the errors in the actual calibrated model 

are not transmitted to the new totals but only to the increment of employment due to the 

fact that we only allocated the increment using the model, not the original employment 

structure which is simply used as the baseline. 

 

Problems with Predicting Total Aggregate Activity  

The problems of specifying aggregate totals which begin the chain of prediction involve 

the fact that these totals reflect net rather than gross change. For example, a sector might 

be declining overall but growing in some places with decline elsewhere cancelling this 

out. This might be caused by simple differential growth in situ or in the case of 

population it can be a complex concatenation of changes in fertility, mortality and 

migration. However if we simply take the aggregate quantities and these are negative, 

then the largest negative values will be allocated to the areas which are most attractive 

to employment. In short, these kinds of models tend to work with positive quantities and 

when we feed them with negative, then the logic will simply be reversed. Strictly 

speaking, we need to separate out growth from decline – positive from negative. If we 

have some sense of this, then we probably need to input this distinction externally and 

for each quantity, )(kE , we need to break this into positive and negative components 

)()()    kkk EEE  and allocate these quantities directly using the logic which 

is embodied in equations (26) and (27). In this case, we would then be somewhat more 

confident that the mechanisms of growth and decline are being dealt with appropriately 

in the model framework. But in the last analysis, the models need to be much more 

disaggregate spatial at all stages and the logic of the integrated input-output, 

employment and spatial interactions models developed by Echenique (2004) amongst 

others is unassailable. Models of the kind developed here tend to be based on the 

expediency of coupling models together which have been designed with different 

purposes in mind and in any further developments, the need to develop the integrated 

framework with strong coupling between the submodels would be critical. 
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Using the Model Framework for Scenario Generation 

The integrated model is currently being used to explore and test the impact of three 

rather different scenarios for the future of the London region. We have a baseline 

scenario referred to as ‘business as usual’ which is essentially a trend projection based 

on current planning policies and infrastructure developments that are already being 

implemented. Current policies also imply a degree of compaction mirroring growth in 

the last two decades, and this is linked to the growth in services and the knowledge 

economy based in London and larger cities. The second scenario is one of 

‘decarbonisation’ with low carbon cities being the dominant vision. This is implied in 

more concentrated, higher density forms and restricted car-based growth. In planning 

policy terms, it is an exaggerated version of ‘business as usual, and it has implications 

for transport in terms of higher fuel prices/taxes promoting greener alternatives. The 

third scenario is one of ‘deregulation’ particularly with respect to compaction and the 

force of the greenbelt. It provides a direct contrast to the second. 

 

All these scenarios imply different levels of employment. None of the ten categories of 

employment involve a decrease overall but this does not mean the problems with the net 

effects of change have been removed. In terms of the operation of the floorspace 

predictions, then starting with new estimates of floorspace which reflect these scenarios, 

we need to iterate equations (20) and also add new capacities, change accessibilities and 

add in anticipated changes in the building stock. In fact there are many locations that we 

need to specify in terms of these predictions and we will concentrate on making general 

changes across the board so that we might evaluate sufficiently different kinds of 

scenarios in terms of the anticipated physical changes. After we have made predictions 

of floorspace, we can make explicit changes in floorspace in the employment equations. 

In fact, we tend to reserve the employment model for handling one-off changes in 

physical and transport capacities while leaving the floorspace models to deal with more 

general changes which affect all zones within the wider region. In short, the floorspace 

and employment models have been designed so that we can intervene and formalise 

scenarios in this way through physical changes to the future region. 
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Conclusions and Next Steps 

 

There are many problems in developing an integrated framework of models based on a 

loose-coupling of existing structures. In theory, an integrated strategy that weaves 

employment into population modelling with consistency at all scales is required but the 

problems of doing this at a disaggregate level and in a temporal, non-equilibrium 

context are formidable. The debate over cross-sectional or dynamic models or some 

fusion of both does not address the two issues that are relevant to using any model in 

prediction: the need to begin the process somewhere with assumptions about aggregate 

quantities and the need to deal with perpetuating errors in the calibrated outputs of 

models when they are used in prediction. Neither of these problems has been addressed 

much, somewhat remarkably given that there is nearly 50 years of sustained effort with 

these kinds of model. This must be due to the fact that the scale of these efforts has 

tended to end before their intensive use in prediction, often because of the sheer scale of 

the exercise in getting to the point where predictions are possible, and/or in terms of the 

organisations involved in building the model whose expertise and goals are often very 

different from those organisations involved in using it in prediction. 

 

Computation has now reached the point where many of these problems can now be 

resolved. Models like this one can be quickly designed, changed, and implemented with 

stakeholders and other scientists in ways that enrich their use in prediction. We need a 

sustained attack on the problem of prediction in urban systems, given that during the 

time when these kinds of models have been developed, our view of the predictability of 

human systems and what predictive models actually mean has changed quite radically. 

The notion of providing predictions but for the shortest intervals of time, has changed 

quite dramatically. Models such as this and others in this book, now need to be used in 

conditional prediction of many kinds, to generate 'what if' scenarios and inform the 

debate about how these tools might be continually modified in response to what we 

learn about the problem and the future. In this context, there is a still a massive dilemma 

between ever more detailed models, and ever more scepticism about what we can 

predict and how we might use prediction in helping us inform these dialogues about the 

future. Integrated modelling is important in this but so also is the need to develop fast, 

visually accessible models that we can change quickly in response to our learning. This 
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implies that the argument about simple, static, aggregate versus complicated, dynamic, 

disaggregate models structure is far from over: it is just beginning. 
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