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The evidence for release of vasoactive substances from endothelial cells in response to shear stress caused by

the viscous drag of passing fluids is reviewed and, in particular, its physiological significance both in short-

term regulation of blood vessel tone and in long-term regulation of cell growth, differentiation, proliferation,

and cell death in pathophysiological conditions is discussed. A new concept of purinergic mechanosensory

transduction, particularly in relation to nociception, is introduced. It is proposed that distension of tubes

(including ureter, vagina, salivary and bile ducts, gut) and sacs (including urinary and gall bladders, and

lung) leads to release of ATP from the lining epithelium, which then acts on P2X
#/$

receptors on

subepithelial sensory nerves to convey information to the CNS.
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Short-term regulation of vascular tone

For many years it was thought that vascular tone was

controlled primarily by sympathetic nerves releasing

noradrenaline (NA) with antagonistic parasympathe-

tic cholinergic vasodilator control in some vessels.

However, there have been some remarkable changes

in our understanding of the mechanisms controlling

vascular tone more recently, especially since the

seminal studies of Furchgott concerning endothelial-

mediated vasodilatation (Furchgott & Zawadski,

1980) and dual control of vascular tone by peri-

vascular nerves and endothelial cells (see Burnstock,

1990; Ralevic & Burnstock, 1996).

Perivascular nerves are confined to the adventitial-

medial border in most blood vessels and it is now

known that they consist of 4 different nerve types,

namely: sympathetic nerves, which utilise as principal

transmitters NA, ATP and neuropeptide Y (NPY);

parasympathetic nerves, which often utilise vasoactive

intestinal polypeptide (VIP) together with acetyl-

choline (ACh); sensory-motor nerves with a chemical

coding consisting of calcitonin gene-related peptide
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(CGRP), substance P (SP) and, in some sub-

populations, ATP; and the projections from neurons

in intrinsic ganglia in the heart, lung, gut etc., which

contain a variety of peptidergic, purinergic, nitrergic

and classical transmitters depending on their location

and species (see Burnstock & Ralevic, 1996).

Endothelial cells are now known to synthesise, store

and release a variety of vasoactive substances in

response to shear stress produced by changes in blood

flow (see Bodin et al. 1994; Koller & Kaley, 1996;

Ralevic & Burnstock, 1996; Loesch & Burnstock,

1998).

Nitric oxide (NO). Nitric oxide synthase (NOS) has

been localised at both light and electron microscope

levels in subpopulations of endothelial cells in most

vessels and increased flow or shear stress results in an

increase in synthesis and release of NO which then

acts on smooth muscle to produce vasodilatation and}
or trophic actions (Pohl et al. 1986; Rubanyi et al.

1986; Busse et al. 1993; Lincoln et al. 1997). Since NOS

inhibitors greatly increase the blood pressure in whole

animals (Rees et al. 1989), it is likely that basal release

of NO in response to changing blood flow patterns

provides vasodilator tone in dynamic balance with



sympathetic vasoconstrictor tone. Shear stress has

also been shown to potentiate agonist-stimulated NO

release evoked by a number of agonists such as ACh,

SP, ATP and 5-hydroxytryptamine (5-HT) (Busse et

al. 1994), probably since these substances are also

released by shear stress (see below) to occupy receptors

that also lead to NO release.

Endothelin-1. Endothelial cells synthesise and store

constricting agents, notably endothelin (ET) (Yana-

gisawa et al. 1988). In addition to directly constricting

vascular smooth muscle, ET can also act on the

endothelium to release NO which produces vaso-

dilatation (Warner et al. 1989). ET is released from

aortic endothelial cells isolated from 12-mo-old

rabbits when they are exposed to an increased

perfusate flow rate (Milner et al. 1990a, 1992).

Chronic hypoxia changes the ratio of ET to ATP

release from rat aortic endothelial cells exposed to

high flow (Bodin et al. 1992). It was suggested that,

under these conditions of reduced arterial oxygen

tension, a dynamic balance between ET (constrictor)

and ATP (dilator) release could regulate the responses

of vessels to shear stress. In double-labelling experi-

ments using colloidal gold with postembedding elec-

tron microscopy, perhaps surprisingly, ET-1 and NOS

have been shown by A. Loesch to be colocalised in

some endothelial cells (Ralevic & Burnstock, 1995).

Choline acetyltransferase-acetylcholine. In the orig-

inal studies by Furchgott and colleagues ACh, acting

via muscarinic receptors on endothelial cells, was

shown to release endothelium-derived relaxing factor

(EDRF)}NO. However, it is unlikely that ACh re-

leased from perivascular nerves in medium to large

blood vessels would survive degradation to reach the

endothelial receptor sites. Therefore it was of interest

when Parnavelas et al. (1985) demonstrated local-

isation of choline acetyltransferase, the synthetic

enzyme for ACh, in vascular endothelial cells of

vessels in the rat brain and they suggested that ACh

was synthesised in the cells and released to cause NO

release from adjacent endothelial cells. Later ACh was

shown to be released during shear stress (Milner et al.

1989, 1990b ; Kawashima et al. 1990).

Substance P. SP was shown subsequently also to be

stored in subpopulations of endothelial cells in various

arteries (Loesch & Burnstock, 1988; Linnik &

Moskowitz, 1989; Milner et al. 1989) and released by

shear stress (Milner et al. 1989, 1990b, 1995). In the

perfused rat hindlimb, increase in flow caused release

of SP into the effluent (Ralevic et al. 1990). After

removal of the endothelium by perfusion with air

bubbles, increased flow no longer evoked release of

SP, showing that it was not originating from peri-

vascular sensory nerves. Furthermore, neonatal cap-

saicin treatment, which destroys SP containing sen-

sory nerves, had no effect on flow-induced release of

SP.

Other vasoactive agents. There is now evidence that

subpopulations of endothelial cells that vary in

different vascular beds store a number of other

vasoactive agents, including 5-HT, arginine-vasopres-

sin, angiotensin II, histamine, atrial natriuretic peptide

(ANP) and under some rare circumstances, CGRP,

VIP and NPY (see Loesch & Burnstock, 1998). There

is documented evidence for the release of some of

these substances in response to increase in perfusion

rate (e.g. Domer et al. 1992, 1993; Bodin et al., 1994,

1995).

ATP. ATP has been shown to be rapidly released

from freshly dissociated or cultured endothelial cells

(see Bodin et al. 1991,1992; Bodin & Burnstock, 1995)

and from different vascular beds in response to

increased perfusion flow rate (Milner et al. 1989,

1990b ; Bodin et al. 1991, 1992; Vials & Burnstock,

1996). It is a feature that with successive increases in

flow there is progressive reduction in ATP release

from endothelial cells, which is in marked contrast to

the release of peptides such as endothelin which

shows increased release with successive flow stimuli

(Fig. 1 ; Bodin et al. 1991). The diminished release of

ATP may be due to the limiting source of adenosine in

the perfusion medium for reuptake into endothelial

cells and conversion to ATP (Pearson & Gordon,

1979), while shear stress is known to increase synthesis

of endothelin (Yoshizumi et al. 1989) which could

account for the larger release of ET during the second

flow-induced stimulation.

Flow-induced release of uridine nucleotides as well

as purine nucleotides has been demonstrated from

cultured endothelial cells of rabbit aorta (Saı$ag et al.

1995).

Long-term trophic actions of substances released

from endothelial cells

While the early interest in substances released from

endothelial cells was focused on their influence on

vascular tone and platelet aggregation, it became

increasingly clear that some of the substances released

could also have long-term influences. For example,

ET, SP, ATP and angiotensin II have all been shown

to produce growth and}or proliferation of smooth

muscle cells (see Schachter, 1990; Erlinge, 1998; Saita

et al. 1998). This is of particular interest for

pathological conditions such as hypertension, athero-

sclerosis, restenosis following angioplasty, diabetes

336 G. Burnstock
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Fig. 1. Release of (a) endothelin and (b) ATP into Krebs’ buffer

perfusing freshly isolated rabbit aortic endothelial cells at low flow

rate (0.5 ml}min) and a higher flow rate (3.0 ml}min, black bar on

horizontal axis). Note that release of endothelin and ATP was

significantly enhanced during high flow (P! 0.001, n¯ 5) and that

a second period of increase in flow led to a further increase in

endothelin release, in contrast to ATP release which was reduced

with the second stimulus (see text) (from Milner et al. 1990a)

and malignancies (see Schachter, 1990; Kohler et al.

1991; Milner & Burnstock, 1994; Abbracchio, 1996).

NO can inhibit proliferation of endothelial cells ; this

may occur in pathological states where production of

NO in plaques and diseased vessels impedes re-

endothelialisation, thereby contributing to adverse

thrombotic or vasospastic activities (Sarker et al.

1995). In contrast, SP has growth-promoting actions

on endothelial cells (Villablanca et al. 1994), whereas

adenosine, a breakdown product of ATP, stimulates

retinal microvascular endothelial cell migration and

tube formation (Lutty et al. 1998)

Human umbilical vessels are unusual in that not all

the substances released during shear stress act on

receptors on adjacent endothelial cells to influence

local vascular tone. Histamine, 5-HT, ATP and ET,

when released from umbilical endothelial cells in

response to shear stress, produce local vasoconstric-

tion (Sexton et al. 1996). However, endothelial cells in

human umbilical veins that contain and release NPY

and ANP, as well as NO, are inactive locally and it has

been suggested that they may have trophic effects on

fetal development (Cai et al. 1993a, b ; Salas et al.

1995; Sexton et al. 1995).

Long-term sympathectomy suppresses flow-induced

release of ATP and endothelin from endothelial cells

isolated from the adult rat aorta (Milner et al. 1996).

Apart from its role as a vasoconstrictor, endothelin

is a mitogenic agent to smooth muscle (Komuro et al.

1988; Hirata et al. 1989). ET is greatly increased in

blood vessels in cancer where it appears to contribute

to tumour enlargement (Shichiri et al. 1991; Shankar

et al. 1998), and perhaps in atherosclerosis and

restenosis (Dashwood et al. 1998).

  



By virtue of their position at the luminal surface of

blood vessels, endothelial cells are ideally situated to

act as sensors of, and as modulators of, changes in

blood flow. The sensitivity of the endothelium to flow

is supported by the morphological and cytoskeletal

changes that occur in cultured endothelial cells

subjected to shear stress (Flaharty et al. 1972). In

some vessels, endothelial cells are subject to pulsatile

laminar blood flow; in other regions, particularly

arterial branch sites, blood flow is turbulent (Davies,

1988), and it has been suggested that this is more

important in the predisposition of vessels for the

development of atherosclerotic lesions.

The cellular and molecular pathways mediating

mechanotransduction in endothelial cells have not

been resolved. There is debate about whether shear-

stressed NO release is Ca#+-dependent or not

(Korenaga et al. 1994; Kuchan & Frangos, 1994). It

has been suggested that shear stress is sensed by

integrins on the cell surface which interact with

cytoskeletal proteins to recruit signalling proteins into

focal adhesion complexes (Davies, 1995). Support for

the involvement of the cytoskeleton in flow-mediated

responses comes from studies of rabbit abdominal

aorta endothelial cells (Hutcheson & Griffith, 1996).

Cytochalasin B, an F-actin depolymerising agent,

phalloidin, an F-actin stabilising agent and colchicine,

a tubulin dimerisation inhibitor were employed to

assess the contribution of the actin microfilament and

microtubule lattice. The results were interpreted to

suggest that the endothelial F-actin microfilament and

microtubule networks are involved in the mechano-

transduction pathway for flow-evoked EDRF release

in rabbit aorta, athough, interestingly, these cyto-

skeletal elements appear to play no role in acetyl-
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choline-induced EDRF release. Shear stress also

activates G protein, Gi
#
α, which may be linked to the

activation of K+ channels (Olesen et al. 1988) and

increase in [Ca#+]
i

(Rubanyi et al. 1986; Lewis &

Smith, 1991). Three temporal signal responses to

shear stress have been postulated: the immediate

production of NO; a rapid response involving acti-

vation of extracellularly regulated kinases including

MAPK and ERK1}2; and a sustained response

involving tyrosine phosphorylation of focal adhesion

kinase (FAK) (Takahashi et al. 1997). The ‘ im-

mediate ’ response is concerned with short-term

physiological control of vascular tone, while the

‘rapid’ and ‘sustained’ responses appear to be more

related to long-term trophic events involved in vessel

wall remodelling and adaptation (see also Davies,

1997). It has also been suggested that stretch-activated

ion channels in vascular endothelial cells may act as

mechanotransducers (Lansman et al. 1987).

It is interesting to note that mechanical stretch

induces ET-1 mRNA and stimulates release of ET-1

from cardiomyocytes (Yamazaki et al. 1996). These

authors also showed that stretching activates MAPK

after 8 min, followed by an increase in protein

synthesis in cardiomyocytes after 24 h. These effects

were inhibited by an angiotensin II antagonist and,

since the local renin-angiotensin system is considered

to play a key role in the mechanism of stretch-induced

hypertrophy of cardiomyocytes (Sadoshima et al.

1993), ET-1 and angiotensin II may cooperate in the

induction of cardiomyocyte hypertrophy.

 



Recent findings suggest that stretch deformation of

epithelial cells leads to release of ATP via a selective

ATP transport process to act on subepithelial sensory

nerves initiating messages to be relayed to the CNS.

Two such systems will now be explored.

Nociception

There were early hints about the actions of ATP on

nociceptive sensory nerves (Bleehan & Keele, 1977;

Bleehan, 1978; Burnstock, 1981; Coutts et al. 1981;

Krishtal et al. 1988; Bouvier et al. 1991). However,

more recently, cloning and characterisation of an

extracellular receptor for ATP has provided direct

evidence for P2X
$

receptor homomultimers and

P2X
#/$

receptor heteromultimers on nociceptive sen-

sory neurons (Chen et al. 1995; Lewis et al. 1995;

Burnstock & Wood, 1996). These receptors have been

localised on subpopulations of nerve cell bodies in

dorsal root, trigeminal and nodose ganglia and on

their central and peripheral extensions with in situ

hybridisation and immunohistochemical methods

(Vulchanova et al. 1996, 1997; Bradbury et al. 1998;

Llewellyn-Smith & Burnstock, 1998). Evidence in

support of this hypothesis is beginning to appear from

application of ATP and purinoceptor antagonists to

in vivo pain models (e.g. Bland-Ward & Humphrey,

1997; Trezise & Humphrey, 1997; Dowd et al. 1998).

The possible sources of the ATP acting on P2X
#/$

receptors was discussed by Burnstock (1996a) in

relation to pain associated with causalgia, reflex

sympathetic dystrophy, cancer and vascular pain such

as migraine, angina and ischaemia, where it was

suggested that endothelial cells in the microcirculation

might provide the source of the ATP acting on

perivascular sensory nerve terminals.

It is now proposed (see Fig. 2) that in tubes such as

ureter, vagina, gut, salivary and bile ducts, and sacs

such as bladder and lung, the pain caused by

distention works through a purinergic mechano-

sensory transduction mechanism, i.e. that the epi-

thelial cells lining these organs release ATP to act on

P2X
#/$

nociceptive receptors on subepithelial sensory

nerve terminals which relay impulses to the CNS to be

registered as pain. There is already supportive evi-

dence for this concept in the bladder (see Ferguson et

al. 1997; Morrison et al. 1998). This hypothesis is

currently being tested further in our laboratory in

distended sensory innervated preparations of ureter

(Cervero & Sann, 1989) and vagina (Friese et al.

1997).

Hearing

There is extensive evidence for purinergic signalling in

the inner ear, the outer hair cells showing particularly

high sensitivity to ATP (see Housley, 1997; Chen &

Bobbin, 1998). Studies with quinacrine, a fluorescent

dye that has been shown to selectively label high levels

of ATP bound to peptides in large granular vesicles

(Irvin & Irvin, 1954; da Prada et al. 1978; Ekelund et

al. 1980) have revealed that marginal cells of the stria

vascularis in the inner ear are positively stained and

these cells have been suggested as the source of ATP

release involved in mechanosensory transduction in

this system (White et al. 1995). ATP release has also

been demonstrated from the organ of Corti (Wanger-

mann, 1996). Levels of ATP measured in the en-

dolymph (13 n) and in perilymph (10 n) even

after some ectoenzymatic breakdown (Munoz et al.
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Fig. 2. Schematic representation of hypothesis for purinergic mechanosensory transduction in tubes (e.g. ureter, vagina, salivary and bile

ducts, gut) and sacs (e.g. urinary and gall bladders, and lung). It is proposed that distention leads to release of ATP from epithelium lining

the tube or sac, which then acts on P2X
#/$

receptors on subepithelial sensory nerves to convey sensory}nociceptive information to the CNS.

1995) approach the threshold reported for functional

responses in isolated guinea pig cochlea outer hair

cells (Housley et al. 1992).

   

This article has focused on shear stress release of

vasoactive substances from endothelial cells, but it has

also been proposed that release of ATP from epithelial

cells lining tubes and sacs in response to stretch is

part of a mechanosensory transduction mechanism

involved in pain. Another possible mechanosensory

mechanism in the inner ear has been described and

there are hints that mechanically released ATP may

also be involved in purinergic signalling in embryonic

development (see Burnstock, 1996b) and bone re-

modelling (Bowler et al. 1998), in cystic fibrosis

(Watt et al. 1998). However, these proposals will need

substantial further experimental work to establish

them as biological processes of physiological signifi-

cance. Discovering precisely how ATP is released

from a variety of cell types, including endothelial and

epithelial cells, odontoblasts and osteoblasts in re-

sponse to mechanical stimuli is an exciting challenge.

It appears likely that this release involves a special

ATP transport mechanism as distinct from exocytotic

release from nerves. There is considerable current

interest in the possibility that mechanically stimulated

ATP transport involves ATP-binding cassette (ABC)

proteins, sulphonylurea receptors and}or cystic fibro-

sis transmembrane conductance regulator (CFTR)

channel proteins. It is interesting in this respect that

glibenclamide was reported to block flow-induced

release of ATP from endothelial cells of the rat

pulmonary vascular bed (Hasse! ssian et al. 1993).

Clearly, discovery of ATP transporters and of agents

that can enhance or inhibit release of ATP to

mechanical stimulation would have significant thera-

peutic potential.
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