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transport, in conjunction with the known (typically inhibi-
tory) actions of autocrine and/or paracrine release of ATP 
from collecting duct epithelial cells acting via luminal P2 re-
ceptors. It is suggested that while luminal responses may 
dominate under normal physiological conditions, in patho-
physiological states, such as stress and dehydration, sympa-
thetic nerves might also be involved in modulating collect-
ing duct fluid and electrolyte transport. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 It is increasingly accepted that ATP is released as an 
autocrine or paracrine agent to act on P2X and P2Y re-
ceptors on kidney nephron collecting duct epithelial cells 
to regulate sodium and water transport  [1–6] .

  P2Y 2 , P2Y 4 , P2X 4  and P2X 6  receptors have been identi-
fied on both apical and basolateral surfaces of collecting 
duct epithelial cells in culture and in native collecting 
ducts  [2, 6, 7] : depending on the receptor subtype and its 
distribution, apical receptors seem to mediate inhibition 
of sodium and water transport  [8–12] , while basolateral 
receptors can mediate not only inhibition of sodium and 
water transport  [9, 13] , but also potentially stimulation of 
sodium reabsorption  [14] .

 Key Words 

 Epithelial cell  �  Kidney  �  Nerve  �  Sympathetic  �  Varicosity 

 Abstract 

  Background:  There are reports of sympathetic innervation 
of the nephron and of P2 purinergic receptors on epithelial 
cells. Since ATP is a cotransmitter with noradrenaline in sym-
pathetic nerves, the objective of the present study was to 
re-investigate basolateral innervation of rat renal collecting 
duct epithelial cells by sympathetic nerves in the context of 
recent data on the effects of ATP on this nephron segment. 
 Methods:  Kidney sections were processed for electron im-
munocytochemistry, using tyrosine hydroxylase rabbit poly-
clonal antibody, with a second layer of biotinylated donkey 
anti-rabbit antibody and finally extravidin-horseradish per-
oxidase. Immunoreactivity was visualised with 3,3 � -diamino-
benzidine and examined with a Philips CM120 transmission 
electron microscope.  Results:  Electron microscopic evi-
dence is presented for close apposition of sympathetic nerve 
varicosities immunolabelled with tyrosine hydroxylase to 
principal and intercalated type epithelial cells of the collect-
ing duct of the cortical region.  Conclusions:  It is suggested 
that ATP is released as a cotransmitter from sympathetic 
nerve varicosities to act on basolateral P2 purinoceptors to 
influence sodium and water (and potentially acid-base) 
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  There are reports in the earlier literature of extensive 
sympathetic innervation of the nephron, particularly of 
the proximal and distal tubules, and the ascending limb 
of Henle’s loop  [15–17] . It is now well established that ATP 
is a cotransmitter with noradrenaline (NA) in sympa-
thetic nerves supplying both visceral organs and blood 
vessels (see  [18–21] ). While the proportions of ATP to NA 
in sympathetic nerves vary in different situations and 
pathophysiological conditions, it is interesting that in the 
sympathetic nerves supplying mesenteric vessels  [22]  and 
intestinal arterioles  [23] , ATP is the sole transmitter, 
while NA released from the nerves acts only as a modula-
tor of ATP release. The present study addresses the pos-
sibility that sympathetic nerves can influence the activi-
ties of collecting duct epithelial cells. It is now recognised 
that autonomic nerves do not form synapses with effector 
cells, but rather that varicosities in terminal nerve fibres 
come in close contact with effector cell membranes to 
form transient junctions, where released transmitters can 
act on receptors expressed by the effector cells and, un-
like synapses, no post-junctional specialisations are pres-
ent  [21, 24, 25] . The possibility that such junctions are 
present on the collecting duct epithelial cells has been in-
vestigated with both immunohistochemical and electron 
microscopic techniques.

  The objectives of this study were to re-investigate the 
basolateral innervation of the renal collecting duct (CD) 
epithelial cells by sympathetic nerves. A pre-embedding 
immunocytochemistry of tyrosine hydroxylase (TH) an-
tibody to label sympathetic nerves was used in conjunc-
tion with electron microscopy of antigen detection.

  Materials and Methods 

 Three adult male Sprague-Dawley rats (200–250 g) were used 
in this study according to UK regulations. Rats were anaesthe-
tised by pentobarbitone (i.p. 60 mg/kg; Sigma Chemical Co., 
Poole, UK) and perfusion-fixed via the heart with fixative ( � 50 
ml) consisting of 4% paraformaldehyde and 0.2% glutaraldehyde 
in 0.1% phosphate buffered saline (PBS). Kidneys were then dis-
sected out and washed in PBS, and 100- � m-thick sections cut us-
ing a vibratome. Sections were processed for the standard pre-
embedding electron immunocytochemistry, using the well-char-
acterised TH rabbit polyclonal antibody (TZ1010 from Biomol 
International L.P., Exeter, UK). In brief, the TH antibody was used 
at 1:   1,000 dilution in PBS containing 10% non-immune normal 
horse serum (Jackson ImmunoResearch Labs, West-Grave, Pa., 
USA); the second antibody was a biotinylated donkey anti-rabbit 
immunoglobulin G (IgG) (Jackson ImmunoResearch Labs) used 
at a dilution 1:   500 in PBS containing 1% non-immune normal 
horse serum; as a third layer, extravidin-horseradish peroxidase 
(Sigma, St. Louis, Mo., USA) was used at a dilution 1:   1,500. Im-

munoreactivity was visualised with 3,3 � -diaminobenzidine (DAB, 
Sigma); specimens were post-fixed in 1% osmium tetroxide, de-
hydrated in a graded ethanol concentrations followed by propyl-
ene oxide, and then embedment in Araldite and polymerised. Ul-
trathin sections ( � 90 nm) were cut from the Araldite blocks, 
counterstained with uranyl acetate and lead citrate and examined 
with a Philips CM120 transmission electron microscope. Nega-
tive controls with omission of the TH antibody or biotinylated 
donkey anti-rabbit IgG resulted in lack of immunolabelling.

  Results 

 Wide-ranging sympathetic innervation of the rat kid-
ney was observed, with nerve fibres distribution predom-
inantly associated with renal vasculature in the cortex 
and outer medulla. An example of a nerve plexus con-
taining TH-positive nerve varicosities associated with a 
small intrarenal artery is shown in  figure 1 . TH-positive 
nerve fibres, including axon varicosities, were also seen 
in the vicinity of proximal and distal tubules, as well as 
in association with the CDs ( fig. 2 a–d,  fig. 3 a, b). An 
abundance of microtubules was apparent in some of the 
TH-positive axon profiles in the vicinity of CDs ( fig. 2 b), 
while other TH-positive axon profiles displayed numer-
ous vesicles ( fig. 2 d), including small agranular and gran-
ular vesicles ( � 40 nm and 70 nm, respectively), and large 
granular vesicles ( � 100 nm). The TH-positive axon vari-
cosities, free of Schwann cells, but rich in vesicles could 
be seen located as close as 100 nm to the basolateral sur-
face of the CD’s epithelial cells ( fig. 2 d). Small micropro-
jections were present on the luminal surface of 1 interca-
lated epithelial cell ( fig. 2 c), while the surface of another 
intercalated epithelial cell ( fig. 3 a) was scarce of the lumi-
nal membrane microprojections. CDs were identified ac-
cording to their anatomical localisation (cortex) and 
morphological/ultrastructural characteristics. (For more 
details on the ultrastructure of collecting ducts, see  [26, 
27] .) Unlabelled control preparations showed more struc-
tural details of axon varicosities associated with CDs 
( fig. 3 c, d). Small electron transparent agranular vesicles 
( � 40 nm) and mitochondria could be seen in the vari-
cosities.

  Discussion 

 The present study demonstrates that TH-positive sym-
pathetic nerve varicosities are associated with CDs in the 
cortex region of rat kidney. Earlier histological data 
showed nerve fibres in the renal cortex and medulla  [28–
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34] . However, most of these nerves were perivascular 
nerves, supplying intrarenal vessels that may receive as 
much as 5 times more innervation (e.g. afferent arteri-
oles) than the renal tubules  [29] . This is also in agreement 
with an unpublished immunofluorescence observation 
of TH-positive nerve fibres associated with intrarenal 
blood vessels in the cortico-medullary region, as well as 
with about 45% of neighbouring aquaporin-2-positive 
CDs (V.G., personal communication). In the present 
study, TH-positive varicosities were observed in the ad-
ventitia of intra-renal arteries and at CDs and other kid-
ney structures. Barajas and Powers  [17]  made similar 
electron micrograph findings of nerve varicosities adja-
cent to CDs, but did not directly confirm their sympa-
thetic nature using immunoreactivity.

  Examination of TH-positive varicosities associated 
with CDs at higher magnification revealed a richness and 
diversity of intra-varicosity vesicular structures, such as 
small agranular and granular vesicles and large granular 
vesicles. These varicosities were located close to the mem-
branes of the CD cells. The narrowest gap observed be-
tween a TH-positive varicosity and the basal membrane 
of a CD epithelial cell was about 100 nm. These findings 
strongly suggest that the sympathetic cotransmitters, NA 
and ATP, might be released from axon varicosities onto 
the basolateral membrane of CDs at this neuroeffector 
junction. It is well established that autonomic neuroeffec-
tor junctions do not form fixed synapses and that the 
‘synaptic’ cleft width varies from 20 nm to 1–2  � m  [24] . 

Thus, the observed apposition of both TH-positive vari-
cosities and CD epithelium fulfil the structural criteria 
for the neuroeffector junction. Details about autonomic 
neuroeffector junctions and non-synaptic transmission 
have recently been highlighted  [35] .

  In the present study, some varicosities were scarce in 
vesicles (or showed none), but were rich in microtubules. 
These varicosities were also present in the region of CDs, 
but they appeared to be not so close to the basal epithe-
lium as those varicosities rich in vesicles. It is likely that 
varicosities containing numerous microtubules are the 
type I sympathetic axons, as previously observed on the 
juxtaglomerular arterioles of the rabbit and rat kidneys 
 [33] . Two types of axons have been described on afferent 
and efferent intralobular arterioles: type I, with microtu-
bules present continuously through intravaricosities and 
varicosities, and type II axons showing only synaptic ves-
icles; both types of axons also appeared to be catechol-
aminergic, since they were able to take up 6-hydroxydo-
pamine  [33] . In the present study, the axons were identi-
fied using the TH antibody. According to   Luff et al.  [36] ,   
both type of axons   dominate in perivascular innervation, 
but the presence of the axons in apposition to proximal 
and distal tubules, macula densa, renin granular epithe-
lial cells and Bowman’s capsule were also observed, there-
fore suggesting significance of neural function for these 
renal structures. The differentiated functional relation-
ships between sympathetic nerves and the intrarenal ef-
fectors such as blood vessels, renal tubules and the juxta-

  Fig. 1.  Electron microscopy of perivascu-
lar region of an artery from the cortex re-
gion of the rat kidney, immunolabelled for 
TH. Note the TH-positive (TH; dark im-
munolabelling) perivascular nerve fibres, 
including axon varicosities, innervating a 
small arteriole. In the TH-positive vari-
cosities, numerous vesicles and mitochon-
dria are present. Also note a TH-negative 
nerve fibre (Ax), arterial vascular smooth 
muscle (sm) and endothelium (En); Pt = 
Proximal tubule; lu = lumen. Bar: 0.5  � m. 
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  Fig. 2.  Electron microscopy of CDs of renal cortex region immu-
nolabelled for TH.  a  A general view of a fragment of CD with sur-
rounding interstitium (inter) shows location of TH-positive nerve 
fibres (arrows). CD’s principal epithelial cell (Ep), nucleus (N) and 
duct’s lumen (lu) can be seen. m = Mitochondria. Bar: 1  � m.  b  At 
high magnification, the TH-positive fibres (arrows) display nu-
merous microtubules (mt), which are densely packed in the axon 
profile indicated by the short arrow; perhaps 1 or 2 vesicle-like 
structures are present. Also note a TH-negative axon profile (Ax) 
and Schwann cell (SCh). Bar: 0.5  � m.  c  A low magnification of a 
fragment of CD with surrounding interstitium shows close appo-
sition of a TH-positive nerve profile (arrow). Note the numerous 

small microprojections present on the luminal surface (interca-
lated epithelial cells). Bar: 1  � m.  d  At high magnification, more 
details of the TH-positive nerve varicosity (size: about 0.5  � m by 
1.1  � m) can be seen, despite the obscuring effect of immunopre-
cipitate. Note the small agranular (av) and granular (gv) vesicles 
of about 40 and 70 nm in diameter, respectively; at least 1 large 
granular vesicle (Lgv) of about 100 nm diameter can be seen. Also 
note that there is no Schwann cell presence in this section and the 
width of the gap between the varicosity and the basal membrane 
of the epithelium (Ep) is about 100 nm; the gap is mostly occupied 
by the basement membrane (bm). Bar: 200 nm. 

a b

dc
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  Fig. 3.  Electron microscopy of CDs of renal cortex region immu-
nolabelled for TH ( a ,  b ) and unlabelled control preparation ( c ,  d ). 
 a  At low magnification, note the TH-positive axon varicosity (ar-
row) located at the base of CD displaying intercalated epithelial 
cells (Ep); note that luminal membrane of intercalated cells is 
scarce in microprojections. Nucleus (N) of epithelial cell and 
duct’s lumen (lu) can be seen. Bar: 0.5  � m.  b  TH-positive axon 
varicosity from ( a ) at higher magnification displays immunopre-
cipitate obscuring numerous microtubules and possibly vesicles 
(ve). Note the close proximity ( � 100 nm) of the varicosity to the 
epithelium basolateral membrane, which forms folds joined by 
junctional complexes including desmosomes (de). Also note that 

the varicosity is naked, i.e. its surface is free of Schwann cells. Bar: 
100 nm.    c  A fragment of a CD with surrounding interstitium in-
cluding fibroblasts (F) at low magnification; note the presence of 
an axon varicosity (arrow) close to the CD’s epithelium contain-
ing numerous mitochondria (m). Bar: 0.5  � m.  d  At high magnifi-
cation, note the structural details of naked (free of Schwann cells) 
axon varicosity showed in ( c ) displaying numerous, mostly small, 
agranular vesicles (av;  � 30–40 nm) and 2 mitochondria (m). The 
distance between the varicosity and the epithelium basolateral 
membrane (making numerous folds) is about 100–150 nm; the 
basement membrane (bm) can also be seen. Bar: 100 nm.     

a b

dc
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glomerular granular cells have been elegantly presented 
by DiBona et al.  [37–39] . It has been assumed that coor-
dination between sympathetic nerves and intrarenal ef-
fectors is essential for overall renal function  [40] . A recent 
example of such an interaction (which may be neural or 
paracrine) between NA and ATP (costimulation) has 
been clearly demonstrated for vasoconstriction of the 
glomerular afferent arteriole  [41] . For healthy renal func-
tion, functioning of both sequential and non-sequential 
junctions made by sympathetic nerves on various effec-
tors is required; projections from renal perivascular sym-
pathetic innervation make sequential junctions, while 
non-perivascular central neurons, with specific and se-
lective afferent reflex input, are associated with non-se-
quential junctions  [28, 36, 39] . It should be mentioned, 
however, that non-sympathetic nerves can also influence 
renal physiology. Here, TH-negative nerve fibres ap-
peared together with TH-positive ones. It is likely they 
represented sensory afferent fibres containing substance 
P and calcitonin gene-related peptide  [42] , and perhaps 
also ATP involved in ‘axon reflex’ activity via antidrome 
impulses in sensory collaterals (see  [43] ), or they may be 
nerve fibres of intrarenal ganglia containing nitric oxide 
synthase that are known to modulate the activities of re-
nal sympathetic nerves  [34] .

  We have shown in the present study at the electron 
microscopic level that sympathetic nerve varicosities 
form close relationships with the basolateral surfaces of 
kidney CD epithelial cells. Similar neuroeffector cell re-
lationships have been considered for cells in salivary  [44] , 
lacrimal  [45] , sweat  [46] , adrenal  [47]  and endocrine 

glands  [48–53] . Close apposition of sympathetic nerve 
varicosities with mast cells, vascular endothelial cells, cil-
iary epithelium and secretory epithelial cells in the lung, 
gut, liver and bone have also been reported (see  [21, 35] ).

  In summary, on the basis of our findings, we speculate 
that basolateral P2X and P2Y receptors on collecting duct 
epithelial cells can be activated by ATP released as a co-
transmitter with NA from sympathetic nerves, which 
may alter sodium and water transport. Moreover, the 
close proximity of these sympathetic nerve terminals to 
intercalated cells (as well as principal cells), suggests po-
tential for a P2-mediated effect on collecting duct acid-
base transport; but as yet, there are no functional data to 
support this. In addition, ATP released from renal tubu-
lar epithelial cells into the lumen by paracrine and auto-
crine mechanisms can also act on P2X and P2Y receptors 
to inhibit sodium and water transport  [7, 9, 12] . Thus, 
there is obvious potential for sophisticated interplay be-
tween these 2 ATP-dependent systems; we suggest that 
while the paracrine/autocrine ATP may dominate under 
normal physiological circumstances, in pathophysiologi-
cal states associated with sympathetic activation, these 
nerves may come into play to modulate collecting duct 
sodium and water transport.
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